首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2002年   2篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k?ε, standard k?ω, and k?ω Shear Stress Transport (SST)) and with one-equation Spalart–Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k?ω turbulence model resulted in the best agreement with the static pressure measurements, with an average error of ~20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.  相似文献   
2.
In the present study, 22 different bacteria were isolated from open ocean water from the Gulf of Mannar, India. Of the 22 isolates, 4 were identified as Vibrio spp. (VM1, VM2, VM3 and VM4) and found to produce siderophores (iron-binding chelators) under iron-limited conditions. Different media were found to have an influence on siderophore production. Maximum siderophore production was observed with VM1 isolate in MM9 salts medium at 48 h of incubation. The isolate was confirmed as Vibrio harveyi based on 16S rRNA gene sequencing and phylogenetic analysis. Fourier-transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectra revealed the hydroxamate nature of the siderophore produced. Further characterization of the siderophore revealed it to be of dihydroxamate nature, forming hexadentate ligands with Fe(III) ions. A narrow shift in ultraviolet (UV)–Vis spectrum was observed on photolysis due to ligand oxidation. Growth-promotion bioassay with Aeromonas hydrophila, Staphylococcus aureus and E. coli confirmed the iron-scavenging property of the siderophore produced by Vibrio harveyi.  相似文献   
3.
Ligand efficient fragments binding to PDK1 were identified by an NMR fragment-based screening approach. Computational modeling of the fragments bound to the active site led to the design and synthesis of a series of novel 6,7-disubstituted thienopyrimidin-4-one compounds, with low micromolar inhibitory activity against PDK1 in a biochemical enzyme assay.  相似文献   
4.
We report significant and reproducible growth acceleration of human progenitor cells when exposed to rotational flow when compared with stationary conditions. Nonenriched CD34+ umbilical cord derived human hematopoietic progenitor cells were cultured in Petri dishes located at different radial distances with respect to the central axis of a rotating platform. Growth dynamics under 3 or 5 rpm agitation was compared against that observed under typical stationary conditions. Cells cultured at 3 or 5 rpm exhibited (a) the absence of a latency phase, (b) an increase in final cell concentrations by 54–58.5%, and (c) reduced doubling time in their exponential phase by 12–16% in comparison with stationary culture. Cells grown under rotational agitation were confirmed to remain CD34+ by PCR. These results document a significant positive effect of exposure to laminar flow fields on the growth of human hematopoietic progenitor cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
5.
Summary In a field experiment on wheat, N-lignin was found as effective as urea in increasing grain yield and nitrogen uptake by the crop. N-lignin also left higher amount of fertilizer residue in the hydrolysable organic-N fraction in the soil than did urea. The effect of margosa (neem) seed cake blended urea on the grain yield, N uptake and soil N was similar to ordinary urea. Supplementing N-lignin with urea did not show any advantage.Phosphorus uptake by wheat crop was enhanced and potassium uptake was depressed by application of N-lignin. Neem seed cake also stimulated phosphorus uptake slightly but had no effect on potassium uptake.  相似文献   
6.
Human immunodeficiency virus type 1 (HIV-1)-infected individuals with HLA-B*35 allelic variants B*3502/3503/3504/5301 (B*35-Px) progress more rapidly to AIDS than do those with B*3501 (B*35-PY). The mechanisms responsible for this phenomenon are not clear. To examine whether cellular immune responses may differ according to HLA-B*35 genotype, we quantified HIV-1-specific CD8(+)-T-cell (CTL) responses using an intracellular cytokine-staining assay with specimens from 32 HIV-1-positive individuals who have B*35 alleles. Among them, 75% had CTL responses to Pol, 69% had CTL responses to Gag, 50% had CTL responses to Nef, and 41% had CTL responses to Env. The overall magnitude of CTL responses did not differ between patients bearing B*35-Px genotypes and those bearing B*35-PY genotypes. A higher percentage of Gag-specific CTL was associated with lower HIV-1 RNA levels (P = 0.009) in individuals with B*35-PY. A negative association between CTL activity for each of the four HIV antigens and viral load was observed among individuals with B*35-PY, and the association reached significance for Gag. No significant relationship between CTL activity and viral load was observed in the B*35-Px group. The relationship between total CTL activity and HIV RNA among B*35-Px carriers differed significantly from that among B*35-PY carriers (P < 0.05). The data are consistent with the hypothesis that higher levels of virus-specific CTL contribute to protection against HIV disease progression in infected individuals with B*35-PY, but not in those with B*35-Px.  相似文献   
7.
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.  相似文献   
8.
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5–100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple—easy to assemble, easy to use, easy to clean—cell culture mini‐bioreactors for lab‐scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini‐bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini‐bioreactor were comparable to those observed for 6‐well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini‐bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini‐bioreactor. Biotechnol. Bioeng. 2013; 110: 1106–1118. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Bacillus pumilus was isolated from surface-sterilized tissues of the medicinal plant Ocimum sanctum. Scanning electron microscopic (SEM) imaging confirmed the presence of a rod shaped bacterium within the plant tissues. The bacterium was identified as B. pumilus by biochemical analyses and 16S rRNA gene sequencing. In vitro analyses indicate that the isolated strain of B. pumilus was endowed with multiple plant growth promotion (PGP) traits such as phosphate solubilization and the production of indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN). Phosphate solubilization (37.3 μg ml?1) and IAA production (36.7 μg ml?1) by the isolate was found to reach a maximum after 60 h of incubation. Siderophore mediated iron sequestration by B. pumilus may confer a competitive advantage to the host with respect to pathogen inhibition. Siderophore produced by the isolate was found to be of a trihydroxamate type with hexadentate nature. The B. pumilus isolate also exhibited cellulolytic, proteolytic and chitinolytic activity. Cell free supernatant, culture filtrates of the isolate were found to suppress the growth of fungal phytopathogens. The culture filtrate retained its antifungal activity even after exposure to heat. In addition to PGP, the isolate exhibited probiotic properties such as acid tolerance (pH2), bile salt tolerance (2 %), auto-aggregation, antibiotic resistance and the absence of haemolytic activity. These finding suggest the possibility of utilizing this endophytic strain of B. pumilus as a bioinoculant to enhance plant growth and also as a probiotic.  相似文献   
10.
The translocation of a single macromolecule through a protein pore or a solid-state nanopore involves three major stages: (1) approach of the macromolecule towards the pore, (2) capture/recognition of the macromolecule at the pore entrance, and (3) threading through the pore (see the Figure) (Muthukumar, 2011). All of these stages are controlled by conformational entropy of the macromolecule, charge decoration, and the geometry of the pore, hydrodynamics, and electrostatic interactions. Chief among the contributing factors are the entropic barrier presented by the pore to the penetration of the macromolecule, pore–polymer interactions, electro-osmotic flow, and the drift-diffusion of the macromolecule in electrolyte solutions. A unifying theory of these contributing factors will be described in the context of a few illustrative experimental data on DNA translocation and protein translocation through protein pores and solid-state nanopores. Future challenges to specific biological systems will be briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号