首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   3篇
  1985年   2篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC(1) astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G(1) phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206-217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.  相似文献   
5.
6.
Use of spectral analysis to test hypotheses on the origin of pinnipeds   总被引:10,自引:4,他引:6  
The evolutionary origin of the pinnipeds (seals, sea lions, and walruses) is still uncertain. Most authors support a hypothesis of a monophyletic origin of the pinnipeds from a caniform carnivore. A minority view suggests a diphyletic origin with true seals being related to the mustelids (otters and ferrets). The phylogenetic relationships of the walrus to other pinniped and carnivore families are also still particularly problematic. Here we examined the relative support for mono- and diphyletic hypotheses using DNA sequence data from the mitochondrial small subunit (12S) rRNA and cytochrome b genes. We first analyzed a small group of taxa representing the three pinniped families (Phocidae, Otariidae, and Odobenidae) and caniform carnivore families thought to be related to them. We inferred phylogenetic reconstructions from DNA sequence data using standard parsimony and neighbor-joining algorithms for phylogenetic inference as well as a new method called spectral analysis (Hendy and Penny) in which phylogenetic information is displayed independently of any selected tree. We identified and compensated for potential sources of error known to lead to selection of incorrect phylogenetic trees. These include sampling error, unequal evolutionary rates on lineages, unequal nucleotide composition among lineages, unequal rates of change at different sites, and inappropriate tree selection criteria. To correct for these errors, we performed additional transformations of the observed substitution patterns in the sequence data, applied more stringent structural constraints to the analyses, and included several additional taxa to help resolve long, unbranched lineages in the tree. We find that there is strong support for a monophyletic origin of the pinnipeds from within the caniform carnivores, close to the bear/raccoon/panda radiation. Evidence for a diphyletic origin was very weak and can be partially attributed to unequal nucleotide compositions among the taxa analyzed. Subsequently, there is slightly more evidence for grouping the walrus with the eared seals versus the true seals. A more conservative interpretation, however, is that the walrus is an early, but not the first, independent divergence from the common pinniped ancestor.   相似文献   
7.
Translational initiation factor 3 (IF3) is an RNA helix destabilizing protein which interacts with strongly conserved sequences in 16S rRNA, one at the 3' terminus and one in the central domain. It was therefore of interest to identify particular residues whose exposure changes upon IF3 binding. Chemical and enzymatic probing of central domain nucleotides of 16S rRNA in 30S ribosomal subunits was carried out in the presence and absence of IF3. Bases were probed with dimethyl sulfate (DMS), at A(N-1), C(N-3), and G(N-7), and with N-cyclohexyl-N'-[2-(N-methyl-4-morpholinio)ethyl] carbodiimide p-toluenesulfonate (CMCT), at G(N-1) and U(N-3). RNase T1 and nuclease S1 were used to probe unpaired nucleotides, and RNase V1 was used to monitor base-paired or stacked nucleotides. 30S subunits in physiological buffers were probed in the presence and absence of IF3. The sites of cleavage and modification were detected by primer extension. IF3 binding to 30S subunits was found to reduce the chemical reactivity and enzymatic accessibility of some sites and to enhance attack at other sites in the conserved central domain of 16S rRNA, residues 690-850. IF3 decreased CMCT attack at U701 and U793 and V1 attack at G722, G737, and C764; IF3 enhanced DMS attack at A814 and V1 attack at U697, G833, G847, and G849. Many of these central domain sites are strongly conserved and with the conserved 3'-terminal site define a binding domain for IF3 which correlates with a predicted cleft in two independent models of the 30S ribosomal subunit.  相似文献   
8.
The halophilic bacterial strain Chromohalobacter sp. TVSP 101 was shown to produce extracellular, halotolerant, alkali-stable and moderately thermophilic α-amylase activity. The culture conditions for higher amylase production were optimized with respect to NaCl, pH, temperature and substrates. Maximum amylase production was achieved in a medium containing 20% NaCl or 15% KCl at pH 9.0 and 37 °C in the presence of 0.5% rice flour and tryptone. Addition of 50 mM CaCl2 to the medium increased amylase production by 29%. Two kinds of amylase activity, designated amylase I and amylase II, were purified from culture filtrates to homogeneity with molecular masses of 72 and 62 kDa, respectively. Both enzymes had maximal activity at pH 9.0 and 65 °C in the presence of 0–20% (w/v) NaCl but amylase I was much more stable in the absence of NaCl than amylase II. The enzymes efficiently hydrolyzed carbohydrates to yield maltotetraose, maltotriose, maltose, and glucose as the end products.  相似文献   
9.
A number of organelles contained within mammalian cells have been implicated in the selective sequestration of chemical entities including drug molecules. Specifically, weakly basic molecules have been shown to selectively associate with either the mitochondrial compartment or lysosomes; however, the structural basis for this differentiation has not been understood. To investigate this, we have identified a series of seven weakly basic compounds, all with pK(a) near neutrality, which have different sequestration sites within the multidrug-resistant HL-60 human leukemic cell line. Three of the compounds were selectively sequestered into the mitochondria of the cells, whereas the remainder were predominantly localized within lysosomes. Using specific chemical inhibitors to disrupt either mitochondrial or lysosomal accumulation capacity, we demonstrated that accumulation of these compounds into respective organelles are not competitive processes. Comparison of the permeability characteristics of these compounds as a function of pH revealed striking differences that correlate with the intracellular sequestration site. Only those compounds with significantly reduced permeability in the ionized state relative to the un-ionized state had the capacity to accumulate within lysosomes. Alternatively, those compounds with relatively pH-insensitive permeability selectively accumulated into mitochondria. Using novel quantitative assays for assaying drug accumulation into subcellular organelles, we demonstrated a correlation between these permeability characteristics and the lysosomal versus mitochondrial accumulation capacity of these compounds. Together, these results suggest that the selective accumulations of weakly basic compounds in either lysosomes and mitochondria occur via exclusive pathways governed by a unique permeability parameter.  相似文献   
10.
Structural elucidation of purified arabinoxylans isolated from finger millet and its malt by methylation, GLC-MS, periodate oxidation, Smith degradation, NMR, IR, optical rotation, and oligosaccharide analysis indicated that the backbone was a 1,4-beta-D-xylan, with the majority of the residues substituted at C-3. The major oligosaccharide generated by endo xylanase treatment was homogeneous with a molecular weight of 1865 Da corresponding to 14 pentose residues as determined by MALDI-TOF-MS and gel filtration on Biogel P-2. The structural analysis of this oligosaccharide showed that it contained 8 xylose and 6 arabinose residues, substituted at C-3 (monosubstituted) and at both C-2 and C-3 (disubstituted).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号