首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2017年   1篇
  2015年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 34 毫秒
1
1.
Suppression of root rot diseases of ornamental plants is a potential benefit of formulating soilless container media with compost. A green compost (green nursery compost, GNC), obtained by a circular-economy approach from residues of pruning of woody plants and grass clippings during the nursery activities was analysed for its suppressiveness of root rot diseases using lavender. To this end, a bioassay was develop by formulating potting mixes containing GNC with two rates of peat substitution (25% and 50%) and infested with the root rot pathogens Sclerotinia sclerotiorum, Rhizoctonia solani and Phytophthora nicotianae. Contrasting results were obtained by using both substrates with a significant reduction of root rot by S. sclerotiorum, no effect on the containment of that by P. nicotianae, and an increase of symptoms caused by R. solani. The specific suppressiveness observed may be attributed to the colonisation of compost by specific groups of antagonistic microorganisms. This hypothesis was investigated by the analysis of culturable fungal community, which resulted in the isolation of Trichoderma harzianum and T. atroviride as preponderant fungal species. Trichoderma representative isolates exerted in vitro antagonistic activities against the target pathogens with varying efficiencies indicating the employment of multiple complementary mechanisms, which may have contributed to the observed specific suppressiveness. Both substrates containing GNC resulted suitable for nursery cultivation of lavender, showing a growth performance similar to that obtained with peat-based substrate. Present results indicate that on-farm compost is a suitable component of mixed-peat substrates capable to support plant growth and provide specific disease suppression.  相似文献   
2.
A comparative study on functional leaf treats and the diurnal dynamics of photosynthetic processes was conducted on 2-year-old potted plants of two grape (Vitis vinifera L.) varieties (Aleatico, ALE, and Trebbiano giallo, TRE), exposed under controlled conditions to realistic concentrations of the pollutant gas ozone (80 ppb for 5 h day-1, 8:00–13:00 h, + 40 ppb for 5 h day-1, 13:00–18:00 h). At constitutive levels, the morphological functional traits of TRE improved leaf resistance to gas exchange, suggesting that TRE is characterized by a potential high degree of tolerance to ozone. At the end of the treatment, both varieties showed typical visible injuries on fully expanded leaves and a marked alteration in the diurnal pattern of photosynthetic activity. This was mainly due to a decreased stomatal conductance (-27 and -29% in ALE and TRE, in terms of daily values in comparison to controls) and to a reduced mesophyllic functioning (+33 and +16% of the intercellular carbon dioxide concentration). Although the genotypic variability of grape regulates the response to oxidative stress, similar detoxification processes were activated, such as an increased content of total carotenoids (+64 and +30%, in ALE and TRE), enhanced efficiency of thermal energy dissipation within photosystem II (+32 and +20%) closely correlated with the increased de-epoxidation index (+26 and +22%) and variations in content of some osmolytes. In summary, we can conclude that: the daily photosynthetic performance of grapevine leaves was affected by a realistic exposure to ozone. In addition, the gas exchange and chlorophyll a fluorescence measurements revealed a different quali-quantitative response in the two varieties. The genotypic variability of V. vinifera and the functional leaf traits would seem to regulate the acclimatory response to oxidative stress and the degree of tolerance to ozone. Similar photoprotective mechanisms were activated in the two varieties, though to a different extent.  相似文献   
3.
Rugini  E.  Muganu  M. 《Plant cell reports》1998,17(6-7):581-585
A novel strategy for the production and maintenance of morphogenic callus for 1 year from mature leaf explants of apple has been developed using micropropagated primary leaves of cv. Golden Delicious. The technique required second generation adventitious buds produced from cultured primary leaves also produced from established shoot cultures. The age at which buds were capable of producing morphogenic callus was critical and found to be when leaflets were 2–3 mm in length. Medium composition affected the maintenance but not the induction of shoot regeneration from callus and the best combination was found to be high calcium, low ammonium and low hormone levels. Adventitious shoots were rooted in vitro and established glasshouse-grown plants showed no phenotypic differences from the plants derived from shoot proliferation. The great advantage of this technique for an increased efficiency of recovery of transgenic plants from transformed cells is discussed and the acquisition and maintenance of cell competence with respect to the formation of shoots in culture is explained. Received: 13 August 1996 / Revision received: 13 November 1996 / Accepted: 6 December 1996  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号