首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   6篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1983年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Forty-eight hours of sodium depletion by acute cannulation of a parotid duct, via the buccal papilla, in the sheep, resulted in a progressive decrease in salivary secretion rate, salivary, urinary and plasma [Na] and no change in plasma [K]. In the first 24 h of Na depletion water intake was significantly increased. As normal sheep parotid saliva [Na] is higher than plasma [Na] and salivary loss over the first 24 h represented Na loss in excess of water relative to extracellular proportions, increased water intake was not osmotically induced. However, the animals did not replace their water deficit on either of the 2 days of Na depletion. This would appear to be valuable experimental model of increased water intake probably induced by hypovaolaemia, but uncomplicated concurrent osmotic stimuli, or any other factors which might result with the other commonly used experimental stimuli of thirst such as haemorrhage.  相似文献   
2.
Cytoplasmic filaments and cellular wound healing in amoeba proteus   总被引:4,自引:4,他引:0       下载免费PDF全文
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
3.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
4.
Inhibition of various ion channels alters chondrocyte mechanotransduction in monolayer, but the mechanisms involved in chondrocyte mechanotransduction in three- dimensional culture remain unclear. The objective of this study was to investigate the effects of inhibiting putative ion-channel influenced mechanotransduction mechanisms on the chondrocyte responses to static and dynamic compression in three-dimensional culture. Bovine articular cartilage explants were used to investigate the dose-dependent inhibition and recovery of protein and sulfated glycosaminoglycan (sGAG) syntheses by four ion-channel inhibitors: 4-Aminopyridine (4AP), a K+ channel blocker; Nifedipine (Nf), a Ca2+ channel blocker; Gadolinium (Gd), a stretch-activated channel blocker; and Thapsigargin (Tg), which releases intracellular Ca2+ stores by inhibiting ATP-dependent Ca2+ pumps. Chondrocyte-seeded agarose gels were used to examine the influence of 20 h of static and dynamic loading in the presence of each of the inhibitors. Overall, treatment with the ion-channel inhibitors had a greater effect on sGAG synthesis, with the exception of Nf, which more substantially affected protein synthesis. Treatment with Tg significantly impaired both overall protein and sGAG synthesis, with a drastic reduction in sGAG synthesis. The inhibitors differentially influenced the responses to mechanical stimuli. Dynamic compression significantly upregulated protein synthesis but did not significantly affect sGAG synthesis with Nf or Tg treatment. Dynamic compression significantly upregulated both protein and sGAG synthesis rates with Gd treatment. There was no significant stimulation of either protein or sGAG synthesis by dynamic compression with 4AP treatment. Interruption of many ion-channel signaling mechanisms affected sGAG synthesis, suggesting a complicated, multi-pathway signaling process. Also, Ca2+ signaling may be critical for the transduction of mechanical stimulus in regulating sGAG synthesis. This modulation potentially occurs through direct interactions with the extracellular matrix.  相似文献   
5.
6.
The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer‐associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor‐associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer‐associated cellular stroma.  相似文献   
7.
8.
The P38 promoter of the autonomous parvovirus minute virus of mice is strongly transactivated by the nonstructural protein NS1, a sequence-specific DNA-binding protein. In the context of the complete viral genome, the only unique cis-acting signals required for P38 transactivation by NS1 are the proximal Sp1 site and the TATA element. In the absence of additional upstream sequences, a dependence upon the NS1 binding site within the transactivation response region is observed. Addition of synthetic NS1 binding sites to transactivation response region deletion mutants can restore the ability of NS1 to transactivate P38, and NS1 transactivation has been directly correlated to its ability to bind upstream of the P38 promoter.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号