首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   53篇
  2021年   7篇
  2020年   3篇
  2018年   4篇
  2017年   10篇
  2016年   7篇
  2015年   18篇
  2014年   22篇
  2013年   27篇
  2012年   24篇
  2011年   22篇
  2010年   13篇
  2009年   22篇
  2008年   15篇
  2007年   17篇
  2006年   18篇
  2005年   17篇
  2004年   13篇
  2003年   14篇
  2002年   7篇
  2001年   13篇
  2000年   17篇
  1999年   9篇
  1998年   13篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   8篇
  1991年   3篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
  1974年   3篇
  1973年   4篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
  1961年   1篇
排序方式: 共有444条查询结果,搜索用时 630 毫秒
1.
2.
3.
Reaction centers of the phototrophic bacterium Rhodopseudomonas palustris were introduced as proton motive force-generating systems in membrane vesicles of two anaerobic bacteria. Liposomes containing reaction center-light-harvesting complex I pigment protein complexes were fused with membrane vesicles of Streptococcus cremoris or Clostridium acetobutylicum by freeze-thawing and sonication. Illumination of these fused membranes resulted in the generation of a proton motive force of approximately -110 mV. The magnitude of the proton motive force in these membranes could be varied by changing the light intensity. As a result of this proton motive force, amino acid transport into the fused membranes could be observed. The initial rate of leucine transport by membrane vesicles of S. cremoris increased exponentially with the proton motive force. An H+/leucine stoichiometry of 0.8 was determined from the steady-state level of leucine accumulation and the proton motive force, and this stoichiometry was found to be independent of the magnitude of the proton motive force. These results indicate that the introduction of bacterial reaction centers in membrane vesicles by the fusion procedure yields very attractive model systems for the study of proton motive force-consuming processes in membrane vesicles of (strict) anaerobic bacteria.  相似文献   
4.
Summary The ultrastructure of a new type of vascular graft, prepared from a mixture of polyurethane (95 weight %) and poly-L-lactic acid (5 weight %), was examined six weeks after implantation into the abdominal aorta of rats. These microporous, compliant, biodegradable, vascular grafts function as temporary scaffolds for the regeneration of the arterial wall.Smooth muscle cells, covering the grafts, regenerated a neo-media underneath an almost completely regenerated endothelial layer (neo-intima). These smooth muscle cells varied in morphology from normal smooth muscle cells to myofibroblasts. They were surrounded by elastic laminae and collagen fibers.Macrophages, epithelioid cells, multinucleated giant cells, fibroblasts and capillaries were present in the disintegrating graft lattices. The epithelioid cells and multinucleated giant cells engulfed polymer particles of the disintegrating grafts.The regeneration of the endothelial and smooth muscle cells is similar to the natural response of arterial tissue upon injury. The presence of macrophages, epithelioid cells, multinucleated giant cells, fibroblasts and capillaries in the graft lattices resembles the natural response of tissue against foreign body implants. Both of these responses result in the formation of a neo-artery that possesses sufficient strength, compliance and thromboresistance to function as a small caliber arterial substitute.Supported by Grant nr. 82.042 from the Dutch Heart Foundation  相似文献   
5.
Mice were injected for 1-2 months daily with 10 mg immunoglobulin G (IgG) from four patients with Lambert-Eaton myasthenic syndrome (LEMS); control mice were injected with pooled human IgG from normal donors. Gastrocnemius muscles were homogenised for the assay of acetylcholine (ACh), choline acetyltransferase (ChAT), and cholinesterase (ChE). The ACh, ChAT, and ChE contents of gastrocnemius muscles from "LEMS mice" were about the same as the control values, which were 180 pmol, 40 nmol X h-1 (37 degrees C), and 15 mumol X h-1 (37 degrees C), respectively. Hemidiaphragms were treated with an irreversible ChE inhibitor (Soman) and incubated at 20 degrees C for estimation of ACh release. Resting ACh release from experimental muscles was reduced by about 25% (P2 less than 0.05) and the release evoked by 3 s-1 nervous stimulation by 50% (P2 less than 0.05). On the other hand, 50 mM KCl-induced transmitter release was not abnormal in LEMS mice. The findings indicate that IgG antibody from patients with LEMS may bind to nerve terminal determinants that are involved in quantal and nonquantal ACh release.  相似文献   
6.
7.
8.
ACETYLCHOLINE METABOLISM AND CHOLINE UPTAKE IN CORTICAL SLICES   总被引:10,自引:6,他引:4  
Abstract— The uptake of [14C]choline was studied in cortical slices from rat brain after their incubation in a Krebs-Henseleit medium containing either 4.7 m m -KCl (low K), 25 m m -KCl (high K) or 25 m m -KCl without calcium (Ca free, high K). With 0.84 μ m -[14C]choline in the medium the uptake per gram of tissue was 0.62 nmol after incubation in low K medium, 1.13 nmol after incubation in high K medium and 0.78 nmol after incubation in a Ca free, high K medium. The differences caused by potassium were greater in fraction P2 than in fractions P1 and S2. With 17 and 50 μ m -[14C]choline in the medium greater amounts of [14C]choline were taken up, but the effect of potassium on the uptake almost disappeared. The amount of radioactive material in fraction P2 followed Michaelis-Menten kinetics with K m values of 2.1 and 2.3 μ m after incubation in low and high K medium, respectively. Hemicholinium-3 only slightly inhibited choline uptake from a medium with 0.84 μ m -[14C]choline, but it abolished the extra-uptake induced by high K medium. The radioactivity in the slices consisted mainly of unchanged choline and little ACh was formed after incubation in low K medium, but after incubation in high K medium 50% of the choline taken up was converted into ACh. The hemicholinium-3 sensitive uptake of choline, the conversion of choline into ACh and the synthesis of total ACh, were stimulated about 7–8-fold by potassium. It is concluded that in cortical slices from rat brain all choline used for the synthesis of ACh is supplied by the high-affinity uptake system, of which the activity is geared to the rate of ACh synthesis.  相似文献   
9.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   
10.
We used 35S-labeled cRNA probes to localize the sites of alpha-lactalbumin, alpha-S1-casein, and lactoferrin mRNA synthesis in sheep and forcibly weaned cattle mammary tissue. Expression of alpha-lactalbumin was absent in three of four "virgin" glands studied, present in some alveoli of "pregnant" glands but not in others, despite a similar histological appearance. In the early lactating gland, expression was high in those alveoli with few fat globules in their cells and lumen and was absent in alveoli with abundant fat globules. These observations suggest either that alpha-lactalbumin gene expression is linked to the long-term secretory activity of cells and falls once cells are resting or regressing, or that there are cyclical variations in expression, or that in the lactating gland some groups of epithelial cells are synthesizing alpha-lactalbumin and some are synthesizing fat. Expression patterns of alpha-S1-casein were similar to those of alpha-lactalbumin. Lactoferrin, in contrast, was expressed almost exclusively in the "fatty alveoli" of both species. Our results show that dramatic variations in milk gene expression can occur throughout the mammary gland of sheep and cattle and that at no stage of pregnancy, lactation, or involution can the gland be considered metabolically homogeneous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号