首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3175篇
  免费   205篇
  国内免费   4篇
  2024年   6篇
  2023年   26篇
  2022年   70篇
  2021年   149篇
  2020年   133篇
  2019年   224篇
  2018年   190篇
  2017年   140篇
  2016年   177篇
  2015年   171篇
  2014年   220篇
  2013年   294篇
  2012年   277篇
  2011年   269篇
  2010年   150篇
  2009年   121篇
  2008年   120篇
  2007年   147篇
  2006年   125篇
  2005年   89篇
  2004年   72篇
  2003年   67篇
  2002年   51篇
  2001年   10篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1997年   12篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有3384条查询结果,搜索用时 62 毫秒
1.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
2.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   
3.
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.  相似文献   
4.
In vitro differentiation studies using the bipotential human leukemia cell line, HL60, have indicated that high levels of expression of two proto-oncogenes, c-fos and c-fms, are restricted to the myelomonocytic lineage. No such expression has been detected in induced granulocytic cells. In striking contrast to these observations, we found that c-fos mRNA levels are very high in purified human granulocytes, but barely detectable in blood monocytes and tissue macrophages. Human granulocytes contain, however, relatively low levels of c-fos protein, indicating that c-fos mRNA is inefficiently translated or that the protein is rapidly degraded in these cells. In closer agreement with the in vitro results, the level of the expression of c-fms is high in purified blood monocytes and undetectable in granulocytes. We found, however, that the evolution of monocytes into tissue macrophages is accompanied by a significant decrease in c-fms expression, suggesting that the function of c-fms is restricted to specific stages of monocytic differentiation. Our observations also show that results obtained using in vitro differentiation systems have to be regarded with caution, since they may not reflect the in vivo situation.  相似文献   
5.
A plentiful supply of fixed nitrogen as ammonium (or other compounds such as nitrate or amino acids) inhibits nitrogen fixation in free-living bacteria by preventing nitrogenase synthesis and/or activity. Ammonium and nitrate have variable effects on the ability ofRhizobiaceae (Rhizobium, Bradyrhizobium andAzorhizobium) species to nodulate legume hosts and on nitrogen fixation capacity in bacteroid cells contained in nodules or in plant-free bacterial cultures. In addition to effects on nitrogen fixation, excess ammonium can inhibit activity or expression of other pathways for utilization of nitrogenous compounds such as nitrate (through nitrate and nitrite reductase), or glutamine synthetase (GS) for assimilation of ammonium. This paper describes the roles of two key genesglnB andglnD, whose gene products sense levels of fixed nitrogen and initiate a cascade of reactions in response to nitrogen status. While work onEscherichia coli and other enteric bacteria provides the model system,glnB and, to a lesser extent,glnD have been studied in several nitrogen fixing bacteria. Such reports will be reviewed here. Recent results on the identity and function of theglnB andglnD gene products inAzotobacter vinelandii (a free-living soil diazotroph) and inRhizobium leguminosarum biovarviciae, hereinafter designatedR.l. viciae will be presented. New data suggests thatAzotobacter vinelandii probably contains aglnB-like gene and this organism may have twoglnD-like genes (one of which was recently identified and namednfrX). In addition, evidence for uridylylation of theglnB gene product (the PII protein) ofR. l. viciae in response to fixed nitrogen deficiency is presented. Also, aglnB mutant ofR. l. viciae has been isolated; its characteristics with respect to expression of nitrogen regulated genes is described.  相似文献   
6.
Aureobasidium pullulans NRRL 6220 synthesized polysaccharide most actively in media containing sucrose, fructose or maltose with (NH4)2SO4 (0.6 g/l) or ammonium acetate giving greatest yields of the polysaccharide. With (NH4)2SO4 at 1.2 g/l, production of polysaccharide was decreased considerably. Polysaccharide production was highest with an initial pH of 6.5 while biomass formation was better below an initial pH of 5.5. Optimum phosphate concentration for polysaccharide production was 0.03 m.S.M. Badr-Eldin, H.G. El-Masry and O.A. Abd El-Rahman are with the Microbial Chemistry Department, National Research Center, Dokki, Cairo, Egypt; F.H.A. Mohamad is with the Chemical Engineering and Pilot Plant Department, National Research Center, Dokki, Cairo, Egypt. O.M. El-Tayeb is with the Microbiology Department, Faculty of Pharmacy, Cairo University, Egypt.  相似文献   
7.
1. Trees present herbivorous insects with the greatest diversity of resources of any plant growth form. Both ontogeny and shading can alter suitability for arboreal insect herbivores. 2. We conducted a longitudinal study of tagged ‘mature’ (>12 months old) Eucalyptus camaldulensis leaves to compare the suitability of understorey and canopy trees for the leaf senescence-inducing psyllid, Cardiaspina albitextura. We quantified sugars and tannins as possible predictors of nymphal abundance. 3. Canopy leaves hosted double the number of nymphs as understorey leaves. Variation among individual trees (understorey and canopy) was the most important source of heterogeneity explaining psyllid abundance, although relative leaf age significantly influenced oviposition on canopy leaves. The diversity of foliar sugars was higher among canopy leaves than among understorey leaves. There was significant between-tree diversity in total hydrolysable tannins (HTs) and total condensed tannins (CTs) among understorey trees but not among canopy trees. Heterogeneity among understorey and canopy trees was explained by greater diversity of ellagitannins (HTs) than of CTs. 4. Shading is detrimental to the survival of nymphs on both host types, but sugars are unlikely to explain variation in suitability. Vescalagin (an ellagitannin) was negatively correlated with the abundance of nymphs on both host types.  相似文献   
8.
9.
New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号