首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   
2.
We have examined nerve growth factor (NGF)-triggered signaling in two NIH3T3 cell lines exogenously expressing the NGF receptor, TrkA. TRK1 cells cease to proliferate and extend long processes in response to NGF, while E25 cells continue to proliferate in the presence of NGF. These two cell lines express similar levels of TrkA and respond to NGF with rapid elevation of mitogen-activated protein kinase (MAPK) activity. MAPK activation is slightly more sustained for E25 cells than for TRK1 cells, although sustained activation of MAPK has been suggested to cause cell-cycle arrest. As judged by NADPH-diaphorase staining, nitric oxide synthase (NOS) activity is increased in TRK1 cells upon exposure to NGF. In contrast, diaphorase staining in E25 cells is unaffected by NGF treatment. Immunocytochemistry shows that levels of the brain NOS (bNOS) isoform are increased in TRK1, but not E25, cells exposed to NGF. Furthermore, Western blots show that NGF elevated cyclin-dependent kinase inhibitor, p21(WAF1), in TRK1 cells only. NGF-induced p21(WAF1) expression, cell-cycle arrest and process extension are abolished by N-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of NOS. The inactive enantiomer, D-NAME, did not inhibit these responses. Furthermore, even though E25 cells do not respond to NGF or nitric oxide donors, they do undergo a morphological change in response to NGF plus a nitric oxide donor. Therefore, NOS and p21(WAF1) are induced only in the TrkA-expressing NIH3T3 cell line that undergoes cell-cycle arrest and morphological changes in response to NGF. These results demonstrate that sustained activation of MAPK is not the sole determining factor for NGF-induced cell-cycle arrest and implicate NO in the cascade of events leading to NGF-induced morphological changes and cell-cycle arrest.  相似文献   
3.
Mathy N  Bénard L  Pellegrini O  Daou R  Wen T  Condon C 《Cell》2007,129(4):681-692
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.  相似文献   
4.
5.
The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN.  相似文献   
6.

Background

The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.

Methodology/Principal Findings

A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.

Conclusion/Significance

The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site.

Trial Registration

ClinicalTrials.gov NCT00308061  相似文献   
7.
H2O2 has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H2O2-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.  相似文献   
8.
9.

Background

Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production.

Methodology/Principal Findings

We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp.

Conclusions

Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.  相似文献   
10.
The tumor suppressor, phosphatase, and tensin homologue deleted on chromosome 10 (PTEN), is a phosphoinositide (PI) phosphatase specific for the 3‐position of the inositol ring. PTEN has been implicated in autism for a subset of patients with macrocephaly. Various studies identified patients in this subclass with one normal and one mutated PTEN gene. We characterize the binding, structural properties, activity, and subcellular localization of one of these autism‐related mutants, H93R PTEN. Even though this mutation is located at the phosphatase active site, we find that it affects the functions of neighboring domains. H93R PTEN binding to phosphatidylserine‐bearing model membranes is 5.6‐fold enhanced in comparison to wild‐type PTEN. In contrast, we find that binding to phosphatidylinositol‐4,5‐bisphosphate (PI(4,5)P2) model membranes is 2.5‐fold decreased for the mutant PTEN in comparison to wild‐type PTEN. The structural change previously found for wild‐type PTEN upon interaction with PI(4,5)P2, is absent for H93R PTEN. Consistent with the increased binding to phosphatidylserine, we find enhanced plasma membrane association of PTEN‐GFP in U87MG cells. However, this enhanced plasma membrane association does not translate into increased PI(3,4,5)P3 turnover, since in vivo studies show a reduced activity of the H93R PTEN‐GFP mutant. Because the interaction of PI(4,5)P2 with PTEN's N‐terminal domain is diminished by this mutation, we hypothesize that the interaction of PTEN's N‐terminal domain with the phosphatase domain is impacted by the H93R mutation, preventing PI(4,5)P2 from inducing the conformational change that activates phosphatase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号