首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   16篇
  2019年   1篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   13篇
  2014年   13篇
  2013年   22篇
  2012年   26篇
  2011年   22篇
  2010年   19篇
  2009年   12篇
  2008年   16篇
  2007年   25篇
  2006年   26篇
  2005年   21篇
  2004年   19篇
  2003年   38篇
  2002年   28篇
  2001年   8篇
  2000年   8篇
  1999年   14篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   6篇
  1989年   17篇
  1988年   12篇
  1987年   12篇
  1986年   3篇
  1985年   10篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   5篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1962年   1篇
排序方式: 共有493条查询结果,搜索用时 343 毫秒
1.
The vascularization of the node-leaf continuum in the first to eighth foliage leaves of the first-year plant ofMagnolia virginiana is investigated. The cotyledonary node is a 4-trace, 3-lacunar type. Vascularization in the cotyledonary node is fundamentally different from that in the folair node of the same plant. As a result, the cotyledonary vascularization is only described but not compared to that in the foliar node-leaf continuum. Considerable diversity occurs in the node-leaf vascularization of the first-year plants. A 5-trace, 4-lacunar vascular system is constant in the lower folair nodes; this is considered to be the fundamental vascular pattern in the node-leaf continuum of the species. In contrast, the nodal anatomy and petiolar vascularization fluctuate widely in the third to eighth leaves of the first-year plants. Variation is found not only between different nodes of a single plant but even in the corresponding nodes of different individuals. The evidence clearly indicates that variation always correlates with certain members of the leaf-trace complement; thus, either the ventral and/or marginal lateral bundles undergo phylogenetical reduction or amplification.  相似文献   
2.
The rate constant of modification of a specific thiol group, SH2, with N-ethylmaleimide (NEM) has been used to estimate the conformational change in the local area containing SH2 (SH2 region) of skeletal myosin as a structural probe. The rate of Mg2+-ATP-induced SH2 modification of subfragment-1 (S-l) isozymes was regulated by Ca2+ in the pCa range below 6.4 and was not regulated in the pCa range above 6.4. No substantial difference between S-1 containing alkali light chain, A1, (S-1(A1)) and S-1 containing alkali light chain, A2, (S-1(A2)) was observed in the Ca2+-dependent rate of SH2 modification. Due to the presence of this Ca2+ regulation in myosin (absence in S-1 isozymes) in the pCa range above 6.4, absence of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) light chain in S-1 isozymes, and high affinity of Ca2+ for DTNB light chain, this Ca2+ regulation in the pCa range above 6.4 is possibly related to the Ca2+ binding to DTNB light chain. F-Actin, which is entirely free from tropomyosin and troponin, enhanced the rate of Mg2+-ATP-induced SH2 modification of S-1 isozymes equally and of myosin, and reduced the Ca2+ sensitivity with an increase in F-actin concentration.  相似文献   
3.
T Okabe  K Sobue 《FEBS letters》1987,213(1):184-188
A new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, was purified from the bovine synaptosomal membrane. The binding of calmodulin to this protein was Ca2+-dependent, and was inhibited by trifluoperazine, the association constant being calculated to be 2.2 X 10(6) M-1. Maximally, 1 mol of calmodulin bound to 1 mol of the purified protein. This protein was phosphorylated by both kinase II (Ca2+- and calmodulin-dependent kinase) and cyclic AMP-dependent kinase. In addition, antibody against this protein was demonstrated to have an immunological crossreactivity with synapsin I in the synaptosomal membrane.  相似文献   
4.
The interactions of actin filaments with actin-binding protein (filamin) and caldesmon under the influence of tropomyosin were studied in detail using falling-ball viscometry, binding assay and electron microscopy. Caldesmon decreased the binding constant of filamin with F-actin. In contrast, the maximum binding ability of filamin to F-actin was decreased by tropomyosin. The filamin-induced gelation of actin filaments was inhibited by caldesmon. Tropomyosin also inhibited this gelation. The effect of caldesmon became stronger under the influence of tropomyosin. Furthermore, both caldesmon and tropomyosin additionally decreased the filamin binding to F-actin. From these results, caldesmon and tropomyosin appeared to influence filamin binding to F-actin with different modes of actin. In addition, there was no sign of direct interactions between filamin, caldesmon and tropomyosin as judged from gel filtration. Under the influence of caldesmon and tropomyosin, calmodulin conferred Ca2+ sensitivity on the filamin-induced gelation of actin filaments.  相似文献   
5.
Dermatan sulfate proteoglycan chains were detected in tissue sections treated with chondroitin B-lyase (0.01 units/ml) in 20 mM Tris-HCl (pH 8.0) for 1 hr, followed by staining with antibody 9A2 specific for unsaturated uronic acid coupled to N-acetylgalactosamine-4 sulfate. In contrast, after treatment with chondroitin B-lyase, no positive staining was observed with antibodies 3B3 and 1B5 which react to the unsaturated uronic acid coupled to N-acetylgalactosamine 6-sulfate and unsaturated uronic acid coupled to N-acetylgalactosamine, respectively. The distribution of dermatan sulfate thus revealed was confirmed by comparison with that found by monoclonal antibody 6B6 which reacts with small proteoglycans carrying dermatan sulfate side chains. The localization of positive staining in fibrous connective tissues was almost identical with these two procedures.  相似文献   
6.
With fluorescence and interference reflection microscopy (IRM), we compared the regional distribution of calspectin, its interacting proteins (nonerythroid protein 4.1 and calpactin), alpha-actinin, and vinculin in NRK cells and their avian sarcoma virus (ASV)- or temperature-sensitive (ts) Rous sarcoma virus (RSV)-transformed cells. The localization of these cytoskeletal proteins was determined with the specific antibodies. In NRK cells, alpha-actinin and vinculin were concentrated at adhesion plaques. By contrast, calspectin was distributed throughout the cytoplasm, but not concentrated at adhesion plaques. In ASV- and ts RSV-transformed cells, all three cytoskeletal proteins were concentrated at dot structures representing cellular feet. Nonerythroid protein 4.1 and calpactin were diffusely distributed throughout the cytoplasm of NRK cells and their transformed counterparts. In the case of calpactin, a part of this protein was excluded near regions of the terminal ends of stress fibers. These two proteins did not show the restricted location at the dot structures of transformed cells. From these findings, it is apparent that the accumulation of calspectin into dot structures is a specific event for cell transformation induced by the src protein.  相似文献   
7.
Summary The immunohistochemical localization of large proteoglycan and small proteoglycan was observed, using antibodies 2B1 and 6B6 (Sobueet al., 1988, 1989a), in fetal and adult pancreas and biliary system as well as in tumour tissues, obtained from 11 autopsies and 74 biopsies. The distribution of chondroitin 4- and 6-sulphate side chains, type I and IV collagen and elastin were also studied. In adult pancreas and all the biliary tracts examined, periductal fibrous tissues consisted mainly of dermatan sulphate small proteoglycan with networks of fibrous elements, which were composed of large proteoglycan, elastin, type I collagen and type IV collagen. In the interstitial components of cystadenoma of pancreas and biliary duct carcinoma, similar small proteoglycan-rich components were relatively abundant, although large proteoglycan was present in much larger amounts than that in non-neoplastic adult tissues. In some cholangiomas, the extra-and intracellular hyaline globules formed by the carcinoma cells were found to contain chondroitin sulphate large proteoglycan, laminin and fibronectin.The distribution of proteoglycans was observed to be different in the arterial walls of the interlobular tissues of the adult and the fetal pancreas. The biological significance of large and small proteoglycans in the interstitial connective tissues was discussed.  相似文献   
8.
Localization of pp60c-src in growth cone of PC12 cell   总被引:2,自引:0,他引:2  
By immunocytochemical and biochemical techniques, we observed the localization and expression of pp60c-src in nerve growth factor (NGF)-treated PC12 cells. Immunostaining of pp60c-src is detected in the neuronal soma and the tips of neurites (growth cones). Immunofluorescence in the neurites is less significant. High-resolution microscopy reveals that the location of pp60c-src in growth cone is in good agreement with the adhesive site of growth cone to the substratum. The pp60c-src kinase activity and the pp60c-src protein level increase 3.1- to 3.5-fold and 2.0-fold during differentiation of PC12 cells, respectively. The pp60c-src levels in the neurite fraction are also higher than those in the neuronal soma fraction. These results support the immunocytochemical finding that pp60c-src is localized in growth cones of differentiated PC12 cells. Furthermore, we discuss the possible role of pp60c-src in growth cone.  相似文献   
9.
The calspectin/actin complex extracted from the bovine brain membrane crosslinks F-actin, resulting in the increasing viscosity of F-actin determined by low-shear viscometry. We demonstrated the presence of a protein factor in this complex, which regulated the calspectin-F-actin interaction in a Ca2+- and calmodulin-dependent manner. Erythrocyte protein 4.1, but not synapsin I, mimics the function of this brain factor using a reconstitution system including purified calspectin, calmodulin and F-actin. In the brain complex, the Mr 120,000 and the Mr 80,000/77,000 polypeptides were detected to crossreact with anti-protein 4.1 antibody.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号