首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2001年   2篇
  1998年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.

Key message

The P SAG12 -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions.

Abstract

Transgenic plants of Rosa hybrida ‘Linda’ were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P SAG12 -ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P35S-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1–6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l?1) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.  相似文献   
2.
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of Rhipsalidopsis cv. CB5 was developed. Calluses derived from phylloclade explants and sub-cultured onto fresh callus induction medium over a period of 9–12 months were co-cultivated with A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable marker, and the reporter uidA gene were used. Transformed Rhipsalidopsis calluses with a vigorous growth phenotype were obtained by extended culture on media containing 600 mg l−1 kanamycin. After 9 months of a stringent selection pressure, the removal of kanamycin from the final medium together with the culture of the transformed calluses under nutritional stress led to the formation of several transgenic adventitious shoots. Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and Southern blot hybridization (for the nptII gene). With this approach, a transformation efficiency of 22.7% was achieved. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for this cactus species.  相似文献   
3.
Somatic embryogenesis was induced from phylloclade explants of Schlumbergera truncata cv. Russian Dancer. Callus developed on phylloclade explants and sub-cultured over a period of 16 months on MS medium containing mainly cytokinins was superior for the induction of somatic embryos compared to callus grown for a shorter time in the establishment medium. Sub-culture of callus grown in SH-or MS-based liquid media supplemented with 7.0 μM kinetin and transferred onto solid MS-based medium with either 0.45 μM 2,4-D or without hormones resulted in the differentiation into somatic embryos. SH-based medium proved better than MS-based medium when used as the first medium for the induction of somatic embryogenesis. However, somatic embryogenesis, contrary to adventitious shoot formation, was reduced when 2,4-D was included in the MS-based medium used for final transfer compared to the medium without growth regulators, indicating that a critical hormonal balance was reached. Somatic embryos developed root and shoot poles when grown on G medium. On this medium approximately 70% germination was recorded in the embryos that were differentiated earlier from the callus that was grown for a longer time in the establishment medium. This callus was grown on either SH- or MS-based medium supplemented with 7.0 μM kinetin, and then transferred after 30 days (from SH medium) onto MS medium without hormones or after 40 days (from MS medium) onto MS medium with 0.45 μM 2,4-D. Furthermore, plants from somatic embryos were successfully potted in soil and showed further growth and formation of a second set of phylloclades (secondary phylloclades). Histological studies showed that somatic embryos had no detectable connection with the mother explants and that advanced stages of somatic embryos had a contained vascular system. In addition to the normal dicotyledonous embryos, anomalous embryos with multiple cotyledons and vase-like embryos were observed. Secondary embryos were also recorded in this study.  相似文献   
4.

Background

The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates.

Methodology and Principal Findings

SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes.

Significance

This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.  相似文献   
5.
The influence of some macronutrients, especially NH4NO3 and KNO3, on root development of microcuttings from 3 apple scion cultivars is discussed. A reduction of the level of NH4NO3 in the medium from full strength to 1/4 strength significantly increased the percentage rooting of Gala and Royal Gala, but not Jonagold. Further reduction of NH4NO3 level from 1/4 strength to zero significantly reduced the percentage of rooting in Gala but not Royal Gala. Jonagold rooted best at zero concentration NH4NO3. Without NH4NO3, rooting percentages were as high as 100% for all 3 cultivars when KNO3 was provided at full strength. The results show that adventitious roots can be induced on apple scion cultivars by media manipulation.  相似文献   
6.
Controlling ethylene responses in flowers at the receptor level   总被引:4,自引:0,他引:4  
For a vast number of ornamental species, blocking the plant's response to ethylene is an efficient strategy to enhance the longevity of the flowers. The most effective ways to conduct such interference will be reviewed in this paper. A large number of chemical compounds have been evaluated for their effects on ethylene production and perception. Among these are a range of strained olefines. This has resulted in the discovery that cyclopropenes, among them 1-methylcyclopropene (1-MCP) and a number of other substituted cyclopropenes effectively block ethylene responses at the receptor level. A lot of testing remains to be done to uncover the full potential of these compounds, but they do offer promising new ways to extend the postharvest life of ornamentals. Also genetic modification appears to be a very effective way in controlling of ethylene synthesis and perception. Attempts to use both a reduced endogenous ethylene production and a reduced sensitivity to ethylene will be reviewed. Among these the use of the mutant ethylene receptor gene, etr1-1, from Arabidopsis seems most promising, especially when it is expressed under the control of a flower specific promoter.  相似文献   
7.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   
8.
NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28 T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases.Key words: NKG2D, NK cell, T cell, monoclonal antibody, human IgG1, humanization, phage display, autoimmune disease  相似文献   
9.
The conditioning of apple shoots for several days in an appropriate liquid medium enhances the regenerative capacity of leaf explants derived from the shoots, so that adventitious buds form in high frequency. The use of conditioning enables the transformation and rapid recovery of plants from otherwise recalcitrant cultivars without the need for an extended callus phase. Conditioning has a wide range of effects on the leaf cells, including increasing the density of the cytoplasm and the complexity of vacuoles, and increasing the porosity of the cell walls from of the order of 3.5 nm to 5.5 nm. The increased porosity may aid the insertion of T-DNA through the cell wall. Initial expression of introduced genes, as judged by the histochemical assay of the β-glucuronidase gene, occurs within 2 days of inoculation with Agrobacterium, usually in groups of 2–20 cells, termed foci. The foci are most commonly composed of an intensely expressing core cell with one or more surrounding layers of less intensely expressing cells. Explants from conditioned leaves contain at least three times as many foci as the control explants. It is concluded that conditioning of apple shoots promotes the recovery of transformed plants from leaf explants by two processes: increasing the number of cells containing and expressing the introduced genes, and by increasing the probability that cells will regenerate directly to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
The frequencies of adventitious root formation in vitro of isolated shoots from bud cultures of apple (Malus pumila cv. Jonathan) after 1, 7 and 31 subcultures (weeks 5, 29 and 109 after the initial culture) were 5, 78 and 95% respectively. Endogenous gibberellin-like substances (GA) were extracted, chromatographed on SiO2 partition columns, and assayed on dwarf rice (Oryza sativa cv. Tan-ginbozu). The levels of GA in shoots from the 1st, 7th and 31st subcultures were 40, 19 and 14 ng GA3 eq./g dry weight of tissue, respectively, a trend which suggests an inverse relationship between endogenous GA level and rooting ability. This is consistent with the fact that applied GA3 inhibits rooting in apple and many other species. The major peak of GA activity eluted coincidentally with GA1/GA3/GA19. Endogenous cytokinin-like substances (CK) were chromatographed on paper and assayed with soybean hypocotyl sections. In contrast to the decrease in GA activity, CK activity increased 1.5–2.7 fold in the later subcultures (cytokinin activity per shoot, however, declined).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号