首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有72条查询结果,搜索用时 968 毫秒
1.
2.
Summary A hydrocarbon-rich green microalga, Botryococcus braunii, was able to grow well in secondarily treated sewage (STS) from domestic waste-water in a batch system. The growth in STS from domestic waste-water was as good as in the common artificial medium of modified Chu 13 and its hydrocarbon contents were high enough at 53% and 40% compared with 58% in the case of the modified Chu 13 medium. B. braunii utilized nitrate from 7.67 or 4.48 mg/l to a level below detection of < 0.01 mg/l in STS. After this consumption of nitrate, nitrite was consumed, and ammonium was not. Phosphate, even at an extremely low concentration, was also consumed by B. braunii. These results show the possibility of using STS as a medium to grow B. braunii and for removal of nitrogen and phosphorus by algal consumption in STS.Correspondence to: S. Yokoyama  相似文献   
3.
The mechanical effects of PGD2 and PGF on longitudinal and circular muscles of the guinea-pig isolated proximal colon were investigated. PGD2 and PGF (1 nM – 10 μM) produced a dose-dependent contraction in longitudinal and circular muscles. The contractile action of PGD2 was more potent than that of PGF in circular muscle and was less potent in longitudinal muscle.Contractions induced by PGD2 or PGF(1 μM) were unaffected by atropine (1 μM) in both muscles, but tetrodotoxin (1 μM) slightly inhibited these contractions in longitudinal muscle.The results suggest that in longitudinal muscle PGD2 and PGF have largely a direct action on the muscle cells and a partial neuronal action on the non-cholinergic intrinsic nerves, whereas in circular muscle these PGs have only a direct action on the muscle cells.  相似文献   
4.
5.
This study evaluated the body composition (underwater weighing) and cardiorespiratory function (VO(2)max and O(2)debt max measured by the treadmill exercise test) in 12 members of the women's volleyball team (mean age 17.4 years) and 11 members of the women's basketball team (mean age 17.6 years) that won the championship in the Japan Inter-high School Meeting. We also examined differences in the physical abilities between the members of the top teams of different events. The following results were obtained. (1) The mean values of the height and body weight were 168.7+/-5.89 cm and 59.7+/-5.73 kg in the volleyball players and 166.5+/-7.87 cm and 58.8+/-6.85 kg in the basketball players. (2) The mean %Fat was 18.4+/-3.29% in the volleyball players and 15.7+/-5.05% in the basketball players, and was similar to the reported values in elite adult players. (3) The mean VO(2)max was 2.78+/-0.32 L x min(-1) (46.5+/-2.90 ml x kg(-1) x min(-1)) in the volleyball players and 3.32+/-0.31 L x min(-1) (56.7+/-4.17 ml x kg(-1) x min(-1)) in the basketball players, and was similar to the reported values in elite adult players. (4) The mean O(2)debt max was 6.18+/-1.15 L (103.2+/-12.40 ml x kg(-1)) in the volleyball players and 7.92+/-1.80 L (134.3+/-23.24 ml x kg(-1)) in the basketball players. These values were 2.6 times and 3.3 times as high as the average values in high school students in general. (5) No significant difference was observed in any measured item of the physique, skinfold thickness, or body composition between the volleyball players and basketball players. (6) The VO(2)max and O(2)debt max were 22% and 28% higher in the basketball players than in the volleyball players.From these results, the female volleyball players and basketball players evaluated in this study had the physical abilities needed to win the championship in the Japan Inter-high School Meets, i.e. a large FFM and excellent aerobic and anaerobic work capacities. Also, basketball appears to require higher aerobic and anaerobic work capacities than volleyball.  相似文献   
6.
7.
BackgroundMutations in GJB2, which encodes connexin 26 (Cx26), a cochlear gap junction protein, represent a major cause of pre-lingual, non-syndromic deafness. The degeneration of the organ of Corti observed in Cx26 mutant—associated deafness is thought to be a secondary pathology of hearing loss. Here we focused on abnormal development of the organ of Corti followed by degeneration including outer hair cell (OHC) loss.MethodsWe investigated the crucial factors involved in late-onset degeneration and loss of OHC by ultrastructural observation, immunohistochemistry and protein analysis in our Cx26-deficient mice (Cx26f/fP0Cre).ResultsIn ultrastructural observations of Cx26f/fP0Cre mice, OHCs changed shape irregularly, and several folds or notches were observed in the plasma membrane. Furthermore, the mutant OHCs had a flat surface compared with the characteristic wavy surface structure of OHCs of normal mice. Protein analysis revealed an increased protein level of caveolin-2 (CAV2) in Cx26f/fP0Cre mouse cochlea. In immunohistochemistry, a remarkable accumulation of CAV2 was observed in Cx26f/fP0Cre mice. In particular, this accumulation of CAV2 was mainly observed around OHCs, and furthermore this accumulation was observed around the shrunken site of OHCs with an abnormal hourglass-like shape.ConclusionsThe deformation of OHCs and the accumulation of CAV2 in the organ of Corti may play a crucial role in the progression of, or secondary OHC loss in, GJB2-associated deafness. Investigation of these molecular pathways, including those involving CAV2, may contribute to the elucidation of a new pathogenic mechanism of GJB2-associated deafness and identify effective targets for new therapies.  相似文献   
8.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   
9.
We have previously produced two bioactive lysine-deficient mutants of TNF-alpha (mutTNF-K90R,-K90P) and found that these mutants have bioactivity superior to wild-type TNF (wtTNF). Because these mutants contained same amino acid except for amino acid 90, it is unclear which amino acid residue is optimal for showing bioactivity. We speculated that this amino acid position was exchangeable, and this amino acid substitution enabled the creation of lysine-deficient mutants with enhanced bioactivity. Therefore, we produced mutTNF-K90R variants (mutTNF-R90X), in which R90 was replaced with other amino acids, to assay their bioactivities and investigated the importance of amino acid position 90. As a result, mutTNF-R90X that replaced R90 with lysine, arginine and proline were bioactive, while other mutants were not bioactive. Moreover, these three mutants showed bioactivity as good as or better than wtTNF. R90 replaced with lysine or arginine had especially superior binding affinities. These results suggest that the amino acid position 90 in TNF-alpha is important for TNF-alpha bioactivity and could be altered to improve its bioactivity to generate a "super-agonist".  相似文献   
10.
Autophagy targets intracellular molecules, damaged organelles, and invading pathogens for degradation in lysosomes. Recent studies have identified autophagy receptors that facilitate this process by binding to ubiquitinated targets, including NDP52. Here, we demonstrate that the small guanosine triphosphatase Rab35 directs NDP52 to the corresponding targets of multiple forms of autophagy. The active GTP‐bound form of Rab35 accumulates on bacteria‐containing endosomes, and Rab35 directly binds and recruits NDP52 to internalized bacteria. Additionally, Rab35 promotes interaction of NDP52 with ubiquitin. This process is inhibited by TBC1D10A, a GAP that inactivates Rab35, but stimulated by autophagic activation via TBK1 kinase, which associates with NDP52. Rab35, TBC1D10A, and TBK1 regulate NDP52 recruitment to damaged mitochondria and to autophagosomes to promote mitophagy and maturation of autophagosomes, respectively. We propose that Rab35‐GTP is a critical regulator of autophagy through recruiting autophagy receptor NDP52.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号