首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20321篇
  免费   1922篇
  国内免费   2259篇
  2024年   32篇
  2023年   252篇
  2022年   358篇
  2021年   951篇
  2020年   725篇
  2019年   929篇
  2018年   862篇
  2017年   634篇
  2016年   872篇
  2015年   1339篇
  2014年   1587篇
  2013年   1540篇
  2012年   1987篇
  2011年   1843篇
  2010年   1167篇
  2009年   1037篇
  2008年   1236篇
  2007年   1189篇
  2006年   983篇
  2005年   857篇
  2004年   719篇
  2003年   659篇
  2002年   639篇
  2001年   322篇
  2000年   268篇
  1999年   241篇
  1998年   181篇
  1997年   151篇
  1996年   113篇
  1995年   100篇
  1994年   99篇
  1993年   72篇
  1992年   84篇
  1991年   53篇
  1990年   59篇
  1989年   58篇
  1988年   40篇
  1987年   27篇
  1986年   38篇
  1985年   25篇
  1984年   17篇
  1983年   20篇
  1982年   13篇
  1981年   12篇
  1980年   15篇
  1979年   16篇
  1977年   8篇
  1976年   8篇
  1975年   10篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 168 毫秒
1.
Many studies have examined the association between the FABP2 (rs1799883) Ala54Thr gene polymorphism and type 2 diabetes mellitus risk (T2DM) in various populations, but their results have been inconsistent. To assess this relationship more precisely, A HuGE review and meta‐analysis were performed. The PubMed and CNKI database was searched for case‐control studies published up to April 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. Ultimately, 13 studies, comprising 2020 T2DM cases and 2910 controls were included. Overall, for the Thr carriers (Ala/Thr and Thr/Thr) versus the wild‐type homozygotes (Ala/Ala), the pooled OR was 1.18 (95% CI = 1.04–1.34, P = 0.062 for heterogeneity), for Thr/Thr versus Ala/Ala the pooled OR was 1.17 (95% CI = 1.05–1.41 P = 0.087 for heterogeneity). In the stratified analysis by ethnicity, the significantly risks were found among Asians but not Caucasians. This meta‐analysis suggests that the FABP2 (rs1799883) Ala54Thr polymorphisms are associated with increased susceptibility to T2DM risk among Asians but not Caucasians.  相似文献   
2.
3.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
4.
5.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
6.
7.
8.
Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.  相似文献   
9.
10.
Aromatic L-amino acid decarboxylase (AADC) is responsible for the conversion of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are important neurotransmitters. We characterized genomic clones derived from the rat AADC locus by Southern blot and nucleotide sequencing analyses to explore the exonal organization of the gene. Our results suggest that the rat AADC gene is relatively large, containing at least 12 exons and spanning at least 40 kb in the rat genome. In this study, nine exons corresponding to 71% of the published cDNA sequence were identified, the smallest of which was as short as 20 base pairs (bp). In the Drosophila dopa decarboxylase (DDC) gene, the sequences homologous to these nine exons are all present in the fourth exon. This implies that either multiple intron sequences have been added to the vertebrate AADC gene or alternatively, deleted from the invertebrate gene after the divergence of vertebrates and invertebrates during evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号