首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21102篇
  免费   2135篇
  国内免费   2688篇
  2024年   35篇
  2023年   268篇
  2022年   432篇
  2021年   1042篇
  2020年   805篇
  2019年   1040篇
  2018年   1009篇
  2017年   759篇
  2016年   990篇
  2015年   1526篇
  2014年   1760篇
  2013年   1778篇
  2012年   2221篇
  2011年   2034篇
  2010年   1282篇
  2009年   1098篇
  2008年   1337篇
  2007年   1166篇
  2006年   959篇
  2005年   854篇
  2004年   706篇
  2003年   614篇
  2002年   584篇
  2001年   284篇
  2000年   248篇
  1999年   233篇
  1998年   164篇
  1997年   119篇
  1996年   73篇
  1995年   68篇
  1994年   79篇
  1993年   48篇
  1992年   57篇
  1991年   39篇
  1990年   38篇
  1989年   26篇
  1988年   23篇
  1987年   17篇
  1986年   15篇
  1985年   13篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1979年   4篇
  1975年   5篇
  1970年   4篇
  1966年   3篇
  1965年   3篇
  1964年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
3.
During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China.  相似文献   
4.
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.  相似文献   
5.
6.
7.
Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号