首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   15篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   10篇
  2012年   15篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1982年   2篇
  1957年   2篇
  1951年   1篇
排序方式: 共有156条查询结果,搜索用时 109 毫秒
1.
2.
3.
4.
Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.  相似文献   
5.
Abstract

Uridylyl-(3′,5′)-8-carboxymethylaminoadenosine has been synthesised, and its transesterification to uridine 2′,3′-cyclic phosphate in the presence and absence of Zn2+ ion has been studied. The results show that a carboxylate function in the vicinity of the phosphodiester bond accelerates the metal ion promoted cleavage but not the metal ion independent reaction. Under acidic conditions, the predominant reaction is the cleavage of the side chain, giving the 8-amino derivative.  相似文献   
6.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
7.
8.
9.
10.
Genetic basis of skin appendage development   总被引:1,自引:0,他引:1  
Morphogenesis of hair follicles, teeth, and mammary glands depends on inductive epithelial-mesenchymal interactions mediated by a conserved set of signalling molecules. The early development of different skin appendages is remarkably similar. Initiation of organogenesis is marked by the appearance of a local epithelial thickening, a placode, which subsequently invaginates to produce a bud. These early developmental stages require many of the same genes and signalling circuits and consequently alterations in them often cause similar phenotypes in several skin appendages. After the bud stage, these organs adopt diverse patterns of epithelial growth, reflected in the usage of more divergent genes in each.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号