首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   0篇
  国内免费   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   9篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
To determine whether vision returns to its original state following eye removal in Achatina fulica, light and electron microscope examinations, electrophysiological recordings and behavioural tests were carried out on the regenerating snails. Reparative morphogenesis can result in the restoration of the peripheral sense organ even in the absence of complete regrowth of the tentacle, but it can also lead to the formation of aberrant regenerates. We found that anatomically and ultrastructurally the eyes of the ‘most normal’ regenerates were basically the same as the original eyes. Under normal conditions each eye is composed of a principal and an accessory eye, both sharing a common cornea. The only difference between regenerated and native eyes is the smaller size of the former, as a result of a reduced number of retinal cells. Electroretinographic responses revealed that the molecular mechanism of phototransduction is restored, in principle, but that flicker fusion frequency in the regenerated eye is significantly lower than in the normal eye. The directional movement to a visual stimulus (a black stripe of 45° width) had not completely recovered even 6 months after amputation. This suggests that the central projections of the optic nerve had not become fully re‐established at the time of testing.  相似文献   
2.
Summary In Streetsia challengeri left and right eyes have fused and become a single cylindrical photoreceptor, which occupies the basal half of a forward directed head projection. This unusual compound eye consists of approximately 2500 ommatidia, which are arranged in such a way that the animal has almost circumferential vision, but cannot look ahead or behind. It is thought that the eye operates on light-guide principles, and that the crystalline cones are the major dioptric component. Ommatidia in anterior-posterior rows show a greater overlap of visual fields than dorso-ventrally arranged ommatidia. Cone layer and retinula are separated by a 4 m thick screen-membrane, which contains tiny pigment granules of 0.15 m diameter. Cells of unknown function and origin, containing unusual multitubular organelles, are regularly found near the proximal ends of the crystalline cone threads. The twisted rhabdoms measure 18–20 m in diameter, and consist of microvilli 0.05 m in width, which belong to five retinula cells and which show no trace of disintegration. The position of interommatidial screening pigment, the density of retinula cell vesicles and inclusions, and the narrowness of the perirhabdomal space all suggest that the eyes have been light-adapted at the time of fixation for electron microscopy. The retinula cell nuclei lie on the proximal side of the heavily pigmented basement membrane. A tapetum or basal retinula cells are not developed. It is concluded that the eye optimally combines acuity with sensitivity, and that for distance estimation parallax may be important.Address until January 25th 1978: Scott Base, Ross Dependency, Antarctica (C/-Chief Post Office, Christchurch, New Zealand)  相似文献   
3.
Indian tribals use insects in a variety of ways. Species containing valuable protein, easily digestible fats, and considerable amounts of vitamins and minerals are consumed; others serve as raw material for folk remedies. Such uses need to be documented, because tribal communities are increasingly discarding their age-old practices. Research into this field can benefit India and the rest of the world in several ways. Traditional communities need to be shown to appreciate the value of their customs and that to look after their environment (lest many of the useful insects will disappear) is not a luxury, but a necessity. Moreover, studying food insects and therapeutically important species can lead to economic spin-offs and would allow countries like India to develop ways to sustainably use this abundant natural resource.  相似文献   
4.
Contrary to most other Diptera, the inter-rhabdomeral spaces of the retina of the Jamaican cavefly Neoditomya farri are filled neither by extracellular matrix nor dense cytoplasmic material. Instead, a foamy organization of loose vacuoles, measuring approximately 0.7 microm in diameter, appears to keep the rhabdomeres of retinula cells 7 and 8 in place. The vacuoles are bounded by membranes and traces of actin, determined immunocytochemically, are present. The origin of the vacuoles is unclear, but evidence in support of a retinula cell rather than cone cell origin is advanced.  相似文献   
5.
6.
7.
Summary Visual membranes of the crayfish eye either belong to the small, distally placed rhabdomere of retinula cell R8 or are part of the much more voluminous proximal rhabdom, made up of rhabdomeres belonging to cells R1–R7. Under various conditions of environmental stress (e.g., prolonged darkness, elevated temperature, bright light with and without a concomitant rise in temperature, flickering lights) the visual membranes of R8 prove far more resistant to structural damage than those of R1–R7. Membrane damage is known to occur when dormant lipoxygenases become activated, for example through heat. Since R8 is the only type of visual cell in the crayfish retina that does not contain grains of screening pigment, the view that screening-pigment granules could aggravate or even trigger membrane damage in times of stress is strengthened. Functionally, R8's strong resistance to physical damage when exposed to flickering lights points to a role of the distal rhabdom in the movement detection system of the crayfish eye.  相似文献   
8.
9.
Abstract. The topic of tissue and organ regeneration has been of interest to life scientists ever since the phenomenon was noticed. The reason for this is obvious: if one can learn what drives and controls regeneration, i.e., how lost or damaged structures can be replaced, one not only has a better chance to understand an animal's embryogenesis and evolutionary relationship with other taxa, but one would also be in a better position to treat organ loss or tissue damage in humans. In this context, the possible restitution of individual sensory neurons or nerve projections has been of special interest to us. We identified central visual projections in several gastropod species and found that: (1) projections are very extensive across the brain and (2) they have connections with other systems and organs (including, most likely, non-ocular skin photoreceptors) that may be involved in the integration of signals from different sensors. Investigations of afferent and efferent visual elements at a morphological level should help reveal the neuronal basis of a gastropod's behavioral reactions.  相似文献   
10.
In order to understand how a compound eye channels light to the retina and forms an image, one needs to know the refractive index distribution in the crystalline cones. Direct measurements of the refractive indices require sections of fresh, unfixed tissue and the use of an interference microscope, but frequently neither is available. Using the eye of the Antarctic krill Euphausia superba (the main food of baleen whales) we developed a computational method to predict a likely refractive index distribution non-invasively from sections of fixed material without the need of an interference microscope. We used a computer model of the eye and calculated the most realistic spatial distribution of the refractive index gradient in the crystalline cone that would enable the eye to produce a sharp image on the retina. The animals are known to see well and on the basis of our computations we predict that for the eyes of the adult a maximum refractive index of 1.45-1.50 in the centre of the cone yields a better angular sensitivity and light absorption in a target receptor of the retina than if N(max) were 1.55. In juveniles with a narrower spatial separation between dioptric structures and retina, however, an N(max) of 1.50-1.55 gives a superior result. Our method to determine the most likely refractive index distribution in the cone without the need of fresh material and an interference microscope could be useful in the study of other invertebrate eyes that are known to possess good resolving power, but for a variety of reasons are not suitable for or will not permit direct refractive index measurements of their dioptric tissues to be taken.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号