首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   20篇
  2020年   1篇
  2015年   3篇
  2012年   4篇
  2011年   3篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
排序方式: 共有66条查询结果,搜索用时 541 毫秒
1.
A resistance-breaking strain of tobacco mosaic virus (TMV), Ltb1, is able to multiply in tomatoes with the Tm-2 gene, unlike its parent strain, L. Nucleotide sequence analysis of Ltb1 RNA revealed two amino acid changes in the 30-kD protein: from Cys68 to Phe and from Glu133 to Lys (from L to Ltb1). Strains with these two changes generated in vitro multiplied in tomatoes with the Tm-2 gene and induced essentially the same symptoms as those caused by Ltb1. Strains with either one of the two changes did not overcome the resistance as efficiently as Ltb1, although increased levels of multiplication were observed compared with the L strain. Results showed that both mutations are involved in the resistance-breaking property of Ltb1. Sequence analysis indicated that another resistance-breaking strain and its parent strain had two amino acid changes in the 30-kD protein: from Glu52 to Lys and from Glu133 to Lys. The fact that the amino acid changes occurred in or near the well conserved regions in the 30-kD protein suggests that the mechanism of Tm-2 resistance may be closely related to the fundamental function of the 30-kD protein, presumably in cell-to-cell movement.  相似文献   
2.
3.
We have demonstrated that foreign DNA can be delivered into cells of mature embryos of wheat (Triticum aestivum L.) using silicon carbide fibers (SCF). The highest transient expression of thegusA (GUS) gene was detected when dry embryos were vortexed for 10–30 min in a SCF-DNA solution containing 90–120 g/l of sucrose. Up to 100 (on average 20–40) blue expression units per embryo were observed. Scutellum side and epiblast of the intact wheat embryos are preferentially transformed. When embryos with the coleoptilar tip removed were treated and allowed to germinate, GUS staining was observed in emerging leaf tissues. The potential of this new approach for stable transformation of wheat is under investigation. It has been found that callus tissues induced from the SCF treated embryos contain GUS-expressing sectors one month after treatment.  相似文献   
4.
Plant Transcription Factors   总被引:13,自引:0,他引:13  
  相似文献   
5.

Background  

Localized network patterns are assumed to represent an optimal design principle in different biological networks. A widely used method for identifying functional components in biological networks is looking for network motifs – over-represented network patterns. A number of recent studies have undermined the claim that these over-represented patterns are indicative of optimal design principles and question whether localized network patterns are indeed of functional significance. This paper examines the functional significance of regulatory network patterns via their biological annotation and evolutionary conservation.  相似文献   
6.
7.
Sakamoto H  Araki T  Meshi T  Iwabuchi M 《Gene》2000,248(1-2):23-32
The genes encoding Cys(2)/His(2)-type zinc-finger proteins constitute a large family in higher plants. To elucidate the functional roles of these types of protein, four different members of the gene family were cloned from Arabidopsis by PCR-aided methods. One was identical to the already reported gene STZ/ZAT10 and three were as yet unidentified genes, then designated AZF1 (Arabidopsis zinc-finger protein 1), AZF2 and AZF3. The AZF- and STZ-encoded proteins contain two canonical Cys(2)/His(2)-type zinc-finger motifs, separated by a long spacer. Three conserved regions, named B-box, L-box, and DNL-box, were also recognized outside the zinc-finger motifs, as in other members of the two-fingered Cys(2)/His(2)-type zinc-finger protein family. These four genes were positioned on the same branch of a phylogenetic tree constructed based on the zinc-finger motif sequences, suggesting their structural and functional relationship. RNA blot analysis showed that all four genes were mainly expressed in roots and at different levels in other organs. Expression of the four genes responded to water stress. High-salt treatment resulted in elevated levels of expression of all of these genes. Low-temperature treatment increased the expression levels of AZF1, AZF3, and STZ, but not AZF2. Only AZF2 expression was strongly induced by ABA treatment, where the time course of the induction was similar to that caused by high salinity. In situ localization showed that AZF2 mRNA accumulated in the elongation zone of the roots under the salt-stress condition. These results suggest that AZF1, AZF2, AZF3, and STZ are all involved in the water-stress response in an ABA-dependent or -independent pathway to regulate downstream genes.  相似文献   
8.
9.
Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.  相似文献   
10.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant''s defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants'' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号