首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   12篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1968年   1篇
  1967年   1篇
  1961年   1篇
  1957年   1篇
  1954年   1篇
  1945年   1篇
  1938年   1篇
  1931年   1篇
  1930年   1篇
  1929年   1篇
  1927年   2篇
  1925年   1篇
  1924年   1篇
排序方式: 共有120条查询结果,搜索用时 62 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
We have utilized the method of whole embryo culture for metabolic labeling of mouse embryos with [3H]glucosamine during closure of neural folds at the posterior neuropore (27- to 29-somite stage). Accumulations of newly synthesized glycopeptides, lactosaminoglycans, hyaluronate, and sulfated glycosaminoglycans (GAG) were assessed by ion-exchange chromatography of glycoconjugates isolated from labeled embryos. Accumulation of hyaluronate and sulfated GAG was greatest in the posterior neuropore and decreased progressively toward the hindbrain where neurulation was already complete. Hyaluronate comprised a progressively smaller proportion of total newly synthesized glycoconjugate from the posterior neuropore toward the cranial region and glycopeptides showed the opposite trend. Sulfated GAG and lactosaminoglycans showed no consistent differences in relative abundance along the neuraxis. Autoradiographic analysis of newly synthesized glycoconjugates revealed especially heavy incorporation into developing basement membranes, beneath the neuroepithelium and around the notochord, in the posterior neuropore and recently closed neural tube regions, but not at more cranial levels of the neuraxis. Predigestion of sections with a specific hyaluronidase showed a significant quantity of this glycoconjugate to be hyaluronate. These results are consistent with a role for neuroepithelial and notochordal basement membrane hyaluronate in spinal neurulation.  相似文献   
3.
Studies have been conducted on eight sets of monozygous and nine sets of dizygous female Negro twins, both members of whom were heterozygous for G-6-PD deficiency. Twins were studied both by assay of erythrocytic G-6-PD activity and by the methemoglobin elution test (MET). The MET is a procedure which identifies histochemically cells with appreciable G-6-PD activity and permits accurate determination of the percentage of such cells in heterozygotes. Monozygous twins showed significantly less within-pair variation than dizygous twins with both the MET and G-6-PD assay.Concerning the significantly greater agreement in MET results in monozygous twins than dizygous twins, our present working hypothesis is that X-chromosomal inactivation in the Negro female is genetically controlled, rather than random. However, certain alternate hypotheses allowing for random X-inactivation have not been excluded; these include somatic cell selection after random X-inactivation, and cell exchange between identical twins in utero/it. Studies in nontwin related heterozygotes now underway should help differentiate among these various possibilities.In addition to the studies on 17 pairs of female twins heterozygous for G-6-PD deficiency, 26 pairs of nondeficient female Negro twins have been studied by G-6-PD assay. Within-pair variation in monozygous twins was significantly less than within-pair variation in dizygous twins in all cases. The genetic influences detected with the G-6-PD assay in the female twins could theoretically be due to nonrandom X-inactivation, to genetically determined quantitative differences in enzyme activity (e.g., isoalleles), or to both. By appropriate calculations, based on the MET results, we have factored out the effects of X-inactivation on overall enzyme activity in the heterozygous deficient twins. After removal of the effect of X-inactivation, monozygous twins heterozygous for enzyme deficiency continue to show significantly less within-pair variation than dizygous twins. This finding indicates significant genetic influences on quantitative G-6-PD activity other than X-inactivation and other than the deficiency allele. This conclusion has been strengthened by studies on male twins where X-inactivation is not present.Supported by USPHS research grants AM-09381, HE-17544, AM-09919, and HE-03341, by USPHS Career Development Award 1-K3-AM-7959 (Dr. Brewer) and by U.S.A.E.C. Contract (11-1)-1552.  相似文献   
4.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
5.
We investigated whether turnover of basal lamina glycosaminoglycan (GAG), an active process during epithelial morphogenesis, involves the mesenchyme. Fixed, prelabeled, isolated mouse embryo submandibular epithelia were prepared retaining radioactive surface components, as determined by autoradiographic and enzymatic studies, and a basal lamina, as assessed by electron microscopy. Recombination of mouse embryo submandibular mesenchyme with these epithelia stimulates the release of epithelial radioactivity when the labeled precursor is glucosamine or glucose but not when it is amino acid. The release is linear with time during 150 min incubation. Augmented release of epithelial label requires living mesenchyme which must be close proximity with the epithelia. Although heterologous mesenchymes, including lung, trachea, and jaw, stimulate the release of submandibular epithelial label, epithelial tissues do not. The label released by intact submandibular mesenchyme from prelabeled epithelia is in GAG and in two unique fractions: heterogeneous materials of tetrasaccharide or smaller size and N-acetylglucosamine. Enzymatic treatment of the heterogeneous materials revealed the presence of glycosaminoglycan-derived oligosaccharides. These unique products were not obtained by incubating prelabeled epithelia with a mesenchymal cell extract, suggesting that intact mesenchymal cells are required. N-Acetylglucosamine was also released when mesenchyme was recombined with living prelabeled epithelia which contained labeled basal laminar GAG. Our results establish that submandibular epithelial basal lamina GAGs are degraded by submandibular mesenchyme. We propose that one mechanism of epithelial-mesenchymal interaction is the degradation of epithelial basal laminar GAG by mesenchyme.  相似文献   
6.
Synchronous beating between chick embryonic heart cell aggregates and heart cell layers was used to study the relationship between intercellular adhesion and ionic coupling. Adhesion was measured by counting the proportion of aggregates which were not to be removed from cell layers by gentle washing after a 30 min incubation. Synchrony between bound aggregates and contiguous layers was assessed by phase microscopy. The first evidence of synchrony was seen 1.5 h after addition of aggregates to layers, following which there was an increase in the percentage of aggregates beating synchronously, reaching over 50% at 7 h and slowly increasing to a maximum of 65% by 24 h. Scanning electron microscopy and autoradiography of thymidine-labeled cells suggest that synchrony does not depend on cell movement at the interface between aggregate and layer. Acquisition of synchrony can be prevented completely by inhibiting protein synthesis, although pulsation of aggregates and layers continues in proportions unchanged from controls. After reversal of protein synthesis inhibition, synchrony is acquired at a rate and to an extent closely resembling that of newly adherent controls. These data indicate that ionic coupling is neither an inevitable nor an immediate consequence of adhesion. Since ionic coupling has been shown to correlate with the presence of gap junctions, the findings suggest that gap junctions are not involved in the initial events responsible for intercellular adhesion in vitro and that their formation following adhesion in this system may depend upon protein synthesis.  相似文献   
7.
We have examined correlations between morphological and functional evidence of cell coupling between aggregates of beating embryonic heart cells and underlying layers. Synchronously beating aggregate-layer pairs were compared with asynchronous pairs. Intracellular microelectrode studies demonstrated that asynchronously beating aggregate-layers could not be induced to beat synchronously by electrical stimulation of the aggregate, whereas 86% of synchronous instances showed propagation of stimulating current pulses from aggregate to layer. By freeze fracture we have found significant differences both in the number and in the total area of gap junctions between the aggregate-layer interfaces of synchronous and asynchronous preparations. The data suggest that synchronous beating is a reliable functional indication of effective ionic coupling, and requires a certain area and number of gap junction/cell.  相似文献   
8.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
9.
10.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号