首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1992年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The use of chaotropic reagents is common in biophysical characterization of biomolecules. When the study involves transmembrane protein channels, the stability of the protein channel and supporting bilayer membrane must be considered. In this letter, we show that planar bilayers composed of poly(1,2-butadiene)-b-poly(ethylene oxide) diblock copolymer are stable and leak-free at high guanidinium chloride concentrations, in contrast to diphytanoyl phosphatidylcholine bilayers, which exhibit deleterious leakage under similar conditions. Furthermore, insertion and functional analysis of channels such as α-hemolysin and MspA are straightforward in these polymer membranes. Finally, we demonstrate that α-hemolysin channels maintain their structural integrity at 2 M guanidinium chloride concentrations using blunt DNA hairpins as molecular reporters.  相似文献   
2.

Background

During 2011, a dramatic increase (1600%) of reported HIV-1 infections among injecting drug users (IDUs) was noted in Athens, Greece. We herein assess the potential causal pathways associated with this outbreak.

Methods

Our study employed high resolution HIV-1 phylogenetic and phylogeographic analyses. We examined also longitudinal data of ecological variables such as the annual growth of gross domestic product (GDP) of Greece in association with HIV-1 and HCV sentinel prevalence in IDUs, unemployment and homelessness rates and HIV transmission networks in Athens IDUs before and during economic recession (2008–2012).

Results

IDU isolates sampled in 2011 and 2012 suggested transmission networks in 94.6% and 92.7% of the cases in striking contrast with the sporadic networking (5%) during 1998–2009. The geographic origin of most HIV-1 isolates was consistent with the recently documented migratory waves in Greece. The decline in GDP was inversely correlated with annual prevalence rates of HIV and HCV and with unemployment and homelessness rates in IDUs (all p<0.001). The slope of anti-HCV prevalence in the sentinel populations of IDUs and in “new” drug injectors was found 120 and 1.9-fold (p = 0.007, p = 0.08 respectively) higher in 2008–2012 (economic recession) compared with 2002–2006. The median (25th, 75th) size of transmission networks were 34 (12, 58) and 2 (2, 2) (p = 0.057) in 2008–2012 and 1998–2007, respectively. The coverage of harm reduction services was low throughout the study period.

Conclusions

Scaling-up harm reduction services and addressing social and structural factors related to the current economic crisis should be urgently considered in environments where HIV-1 outbreaks may occur.  相似文献   
3.
Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation.  相似文献   
4.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.  相似文献   
5.
An experimental model of toxic liver injury in rats was employed to assay the effect of Nifedipine (a calcium antagonist blocker) and S-Adenosylmethionine (a precursor of glutathione). An important decrease in both perivenular fibrosis and cirrhosis was found. Furthermore, a significant decrease in lactic acid levels was found in the group of animals treated with pharmacologic therapy, although no correlation was seen between lactic acid levels and the different degrees of perivenular fibrosis. No significant variations in ALT and AST enzymes were observed between both groups, as opposed to a significant decrease in LDH enzyme in the Nifedipine+S-Adenosylmethionine group. The results indicate an improvement in the histologic picture of the liver in rats treated by means of pharmacological association, without any change in inflammatory infiltrate and with a slight decrease in necrosis, indicating an action mechanism via creeping fibrosis (instead of a hepatitis pathway).  相似文献   
6.

Background

The aim of this study was to assess the disease burden of the 2009 pandemic influenza A(H1N1) in Greece.

Methodology/Principal Findings

Data on influenza-like illness (ILI), collected through cross-sectional nationwide telephone surveys of 1,000 households in Greece repeated for 25 consecutive weeks, were combined with data from H1N1 virologic surveillance to estimate the incidence and the clinical attack rate (CAR) of influenza A(H1N1). Alternative definitions of ILI (cough or sore throat and fever>38°C [ILI-38] or fever 37.1–38°C [ILI-37]) were used to estimate the number of symptomatic infections. The infection attack rate (IAR) was approximated using estimates from published studies on the frequency of fever in infected individuals. Data on H1N1 morbidity and mortality were used to estimate ICU admission and case fatality (CFR) rates. The epidemic peaked on week 48/2009 with approximately 750–1,500 new cases/100,000 population per week, depending on ILI-38 or ILI-37 case definition, respectively. By week 6/2010, 7.1%–15.6% of the population in Greece was estimated to be symptomatically infected with H1N1. Children 5–19 years represented the most affected population group (CAR:27%–54%), whereas individuals older than 64 years were the least affected (CAR:0.6%–2.2%). The IAR (95% CI) of influenza A(H1N1) was estimated to be 19.7% (13.3%, 26.1%). Per 1,000 symptomatic cases, based on ILI-38 case definition, 416 attended health services, 108 visited hospital emergency departments and 15 were admitted to hospitals. ICU admission rate and CFR were 37 and 17.5 per 100,000 symptomatic cases or 13.4 and 6.3 per 100,000 infections, respectively.

Conclusions/Significance

Influenza A(H1N1) infected one fifth and caused symptomatic infection in up to 15% of the Greek population. Although individuals older than 65 years were the least affected age group in terms of attack rate, they had 55 and 185 times higher risk of ICU admission and CFR, respectively.  相似文献   
7.
High-bandwidth measurements of the ion current through hafnium oxide and silicon nitride nanopores allow the analysis of sub-30 kD protein molecules with unprecedented time resolution and detection efficiency. Measured capture rates suggest that at moderate transmembrane bias values, a substantial fraction of protein translocation events are detected. Our dwell-time resolution of 2.5 μs enables translocation time distributions to be fit to a first-passage time distribution derived from a 1D diffusion-drift model. The fits yield drift velocities that scale linearly with voltage, consistent with an electrophoretic process. Further, protein diffusion constants (D) are lower than the bulk diffusion constants (D0) by a factor of ∼50, and are voltage-independent in the regime tested. We reason that deviations of D from D0 are a result of confinement-driven pore/protein interactions, previously observed in porous systems. A straightforward Kramers model for this inhibited diffusion points to 9- to 12-kJ/mol interactions of the proteins with the nanopore. Reduction of μ and D are found to be material-dependent. Comparison of current-blockage levels of each protein yields volumetric information for the two proteins that is in good agreement with dynamic light scattering measurements. Finally, detection of a protein-protein complex is achieved.  相似文献   
8.
The potential and challenges of nanopore sequencing   总被引:3,自引:0,他引:3  
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.  相似文献   
9.
We investigate the voltage-driven translocation dynamics of individual DNA molecules through solid-state nanopores in the diameter range 2.7-5 nm. Our studies reveal an order of magnitude increase in the translocation times when the pore diameter is decreased from 5 to 2.7 nm, and steep temperature dependence, nearly threefold larger than would be expected if the dynamics were governed by viscous drag. As previously predicted for an interaction-dominated translocation process, we observe exponential voltage dependence on translocation times. Mean translocation times scale with DNA length by two power laws: for short DNA molecules, in the range 150-3500 bp, we find an exponent of 1.40, whereas for longer molecules, an exponent of 2.28 dominates. Surprisingly, we find a transition in the fraction of ion current blocked by DNA, from a length-independent regime for short DNA molecules to a regime where the longer the DNA, the more current is blocked. Temperature dependence studies reveal that for increasing DNA lengths, additional interactions are responsible for the slower DNA dynamics. Our results can be rationalized by considering DNA/pore interactions as the predominant factor determining DNA translocation dynamics in small pores. These interactions markedly slow down the translocation rate, enabling higher temporal resolution than observed with larger pores. These findings shed light on the transport properties of DNA in small pores, relevant for future nanopore applications, such as DNA sequencing and genotyping.  相似文献   
10.
A zero-mode waveguide (ZMW) is a nanoscale optical waveguide driven at a frequency below its cut-off. In this mode, the electric field, instead of traveling down the axis of the conducting cavity, decays exponentially. By fabricating waveguides with sub-wavelength diameters and illuminating them with laser light, the electric field in the waveguide is confined enough to enable single-molecule optical detection at micromolar concentration [1]. Immobilizing single DNA polymerases in ZMWs and using special phosphate-fluorescently labeled dNTPs form the basis for single-molecule real-time DNA sequencing, one of the most promising next-generation sequencing platforms [2]. In this method, the polymerase replicates the sample DNA, and as it incorporates new bases into the product strand, the labeled dNTPs emit a burst of light before the phosphate is cleaved off. The sequence of colors corresponds to the DNA sequence (see Figure 1 below from Eid et al., 2009). Because the ZMW aperture’s diameter is sub-diffraction-limit, it is impossible to optically distinguish one polymerase in a ZMW from two. Having only one polymerase in each waveguide is critical to sequencing accuracy. In its present state, experimenters use diffusion to fill ZMWs with polymerases, resulting in a Poisson distribution for filling ZMWs, and consequently a theoretical limit of 36.8% of ZMWs having only one polymerase [2]. We achieve full polymerase occupancy of ZMWs by fabricating the structures on an ultrathin silicon nitride membrane and drilling a nanopore at the base of each waveguide with an ion beam. A short DNA fragment with biotin on either end is conjugated to a streptavidin and then drawn into the nanopore with a voltage bias. There is then a free biotin at the base of the ZMW. A polymerase–streptavidin complex can diffuse into the ZMW and bind to the exposed biotin. Because the nanopore is too small to fit more than one molecule, only one ZMW will bind to a biotin in the nanopore. Upon flushing the ZMW chamber, the biotin-bound polymerase will remain trapped in the pore, and only a single polymerase will remain at the base of each waveguide.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号