首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3695篇
  免费   363篇
  国内免费   2篇
  2023年   27篇
  2022年   22篇
  2021年   137篇
  2020年   86篇
  2019年   110篇
  2018年   108篇
  2017年   96篇
  2016年   150篇
  2015年   240篇
  2014年   207篇
  2013年   297篇
  2012年   319篇
  2011年   298篇
  2010年   183篇
  2009年   148篇
  2008年   201篇
  2007年   176篇
  2006年   168篇
  2005年   145篇
  2004年   111篇
  2003年   103篇
  2002年   91篇
  2001年   36篇
  2000年   24篇
  1999年   31篇
  1998年   25篇
  1997年   16篇
  1995年   17篇
  1994年   11篇
  1992年   12篇
  1991年   24篇
  1988年   15篇
  1987年   12篇
  1986年   18篇
  1985年   13篇
  1984年   26篇
  1983年   12篇
  1982年   15篇
  1979年   21篇
  1976年   17篇
  1975年   16篇
  1974年   17篇
  1973年   16篇
  1972年   14篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1968年   14篇
  1967年   13篇
  1966年   12篇
排序方式: 共有4060条查询结果,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
2.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
3.
At around 7 months of age, human infants begin to reliably produce well-formed syllables containing both consonants and vowels, a behavior called canonical babbling. Over subsequent months, the frequency of canonical babbling continues to increase. How the infant’s nervous system supports the acquisition of this ability is unknown. Here we present a computational model that combines a spiking neural network, reinforcement-modulated spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of canonical babbling. Like human infants, the model’s frequency of canonical babbling gradually increases. The model is rewarded when it produces a sound that is more auditorily salient than sounds it has previously produced. This is consistent with data from human infants indicating that contingent adult responses shape infant behavior and with data from deaf and tracheostomized infants indicating that hearing, including hearing one’s own vocalizations, is critical for canonical babbling development. Reward receipt increases the level of dopamine in the neural network. The neural network contains a reservoir with recurrent connections and two motor neuron groups, one agonist and one antagonist, which control the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The model learns to increase the number of salient, syllabic sounds it produces by adjusting the base level of muscle activation and increasing their range of activity. Our results support the possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor cortex learns to harness its natural oscillations in activity in order to produce syllabic sounds. It thus suggests that learning to produce rhythmic mouth movements for speech production may be supported by general cortical learning mechanisms. The model makes several testable predictions and has implications for our understanding not only of how syllabic vocalizations develop in infancy but also for our understanding of how they may have evolved.  相似文献   
4.
5.
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.  相似文献   
6.
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E 0) from 305 to –42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.  相似文献   
7.
NADH diferric transferrin reductase in liver plasma membrane   总被引:6,自引:0,他引:6  
Evidence is presented that rat liver plasma membranes contain a distinct NADH diferric transferrin reductase. Three different assay procedures for demonstration of the activity are described. The enzyme activity is highest in isolated plasma membrane, and activity in other internal membranes is one-eighth or less than in plasma membrane. The activity is inhibited by apotransferrin and antitransferrin antibodies. Trypsin treatment of the membranes leads to rapid loss of the transferrin reductase activity as compared with NADH ferricyanide reductase activity. Erythrocyte plasma membranes, which lack transferrin receptors, show no diferric transferrin reductase activity, although NADH ferricyanide reductase is present. The transferrin reductase is inhibited by agents that inhibit diferric transferrin reduction by intact cells and is activated by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfate) detergent. Inhibitors of mitochondrial electron transport have no effect on the activity. We propose that the NADH diferric transferrin reductase in plasma membranes measures the activity of the enzyme that causes the reduction of diferric transferrin by intact cells. This transmembrane electron transport system requires the transferrin receptor for diferric transferrin reduction. Because the transmembrane electron transport has been shown to stimulate cell growth, the reduction of diferric transferrin at the cell surface may be an important function for diferric transferrin in stimulation of cell growth, in addition to its role in iron transport.  相似文献   
8.
Proton release from HeLa cells is stimulated by external oxidants for the transplasmalemma electron transport enzymes. These oxidants, such as ferricyanide and diferric transferrin, also stimulate cell growth. We now present evidence that proton release associated with the reduction of ferricyanide and diferric transferrin is through the Na+/H+ antiport. The stoichiometry of H+/e- release with diferric transferrin is over 50 to 1, which is greater than expected for oxidation of a protonated transmembrane electron carrier. Diferric transferrin induced proton release depends on external sodium and is inhibited by amiloride. Proton release is also inhibited when diferric transferrin reduction is inhibited by apotransferrin. A tightly coupled association between the redox system and the antiport is shown by sodium dependence and amiloride inhibition of diferric transferrin reduction. The results indicate a new role for ferric transferrin in growth stimulation by activation of the sodium-proton antiport.  相似文献   
9.
Peroxisomal enoyl-CoA hydratase was purified from livers of mice treated with di-(2-ethylhexyl)phthalate and its properties compared with those of the 70 kDa protein present in the membranes prepared by carbonate extraction of peroxisomes. The two proteins had identical subunit molecular masses, of about 70,000 daltons. Limited proteolysis of these proteins using the V8 proteinase of S. aureus yielded identical peptide maps, with these peptides crossreacting with antiserum raised against the 70 kDa membrane protein. These data are consistent with the proposal that the peroxisomal 70 kDa membrane protein and the peroxisomal enoyl-CoA hydratase are the same protein.  相似文献   
10.
Retinoic acid inhibits the reduction of diferric transferrin through the transplasma membrane electron transport system on fetal rat liver cells infected with a temperature-sensitive SV40 virus when the cells are in the nontransformed state cultured at 40°C. When the cells are in the transformed state (grown at the permissive 33°C temperature), retinoic acid does not inhibit the diferric transferrin reduction. Inhibition of activity of nontransformed cells is specific for retinoic acid with only slight inhibition by retinol and retinyl acetate at higher concentrations. Isolated rat liver plasma membrane NADH diferric transferrin reductase is also inhibited by retinoic acid. The effect of transformation with SV40 virus to decrease susceptibility to retinoic acid inhibition stands in contrast to much greater adriamycin inhibition of diferric transferrin reduction in the transformed cells than in nontransformed cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号