首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   12篇
  国内免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
2.
3.

Background  

The use of small interfering RNAs (siRNAs) to silence target gene expression has greatly facilitated mammalian genetic analysis by generating loss-of-function mutants. In recent years, high-throughput, genome-wide screening of siRNA libraries has emerged as a viable approach. Two different methods have been used to generate short hairpin RNA (shRNA) libraries; one is to use chemically synthesized oligonucleotides, and the other is to convert complementary DNAs (cDNAs) into shRNA cassettes enzymatically. The high cost of chemical synthesis and the low efficiency of the enzymatic approach have hampered the widespread use of screening with shRNA libraries.  相似文献   
4.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
5.
6.
7.
8.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   
9.
We determined previously that the selectable marker pSV2neo is preferentially inserted into chromosomal fragile sites in human x hamster hybrid cells in the presence of an agent (aphidicolin) that induces fragile-site expression. In contrast, cells transfected without fragile-site induction showed an essentially random integration pattern. To determine whether the integration of marker DNA at fragile sites affects the frequency of fragile-site expression, the parental hybrid and three transfectants (two with pSV2neo integrated at the fragile site at 3p14.2 [FRA3B] and specific hamster fragile sites [chromosome 1, bands q26-31, or mar2, bands q11-13] and one with pSV2neo integrated at sites that are not fragile sites) were treated with aphidicolin. After 24 h the two cell lines with plasmid integration at FRA3B showed structural rearrangements at that site; these rearrangements accounted for 43%-67% of the total deletions and translocations observed. Structural rearrangements were not observed in the parental cell line. After 5 d aphidicolin treatment, the observed excess in frequency of structural rearrangements at FRA3B in the cell lines with pSV2neo integration at 3p14 over that in the two lines without FRA3B integration was less dramatic, but nonetheless significant. Fluorescent in situ hybridization (FISH) analysis of these cells, using a biotin-labeled pSV2neo probe, showed results consistent with the gross rearrangements detected cytogenetically in the lines with FRA3B integration; however, the pSV2neo sequences were frequently deleted concomitantly with translocations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号