首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   21篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   10篇
  2014年   7篇
  2013年   7篇
  2012年   17篇
  2011年   12篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   4篇
  2002年   13篇
  2001年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1986年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1954年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
Summary MaleThecophora fovea (Tr.) (Noctuidae) sing continuously for several minutes by rubbing the 1. tarsal segment of the metathoracic leg against a stridulatory swelling on the hindwing. In Northern Yugoslavia (Slovenia) the males emerge in late October and start stridulating about a week later when the females emerge.The sounds are pulse trains consisting of 10–12 ms long sound pulses with main energy around 32 kHz and a PRR of 20 pulses/s. The mechanics of the sound producing apparatus was studied by activating the stridulatory swelling with short sound impulses. The impulse response of the swelling was recorded by laser vibrometry and amplitude spectra of the vibrations showed maximum velocities between 25 and 35 kHz. Hence, it seems likely that the stridulatory swelling is driven as a mechanical oscillator with a resonance frequency which determines the carrier frequency of the sounds.Audiograms of both males and females showed peak sensitivities at 25–30 kHz. The median threshold at the BF was 36 dB SPL. The peak intensity of the sound pulses was 83 dB SPL at 1 m, which should enable the moths to hear each other at distances of around 30 m. Therefore sound production inT. fovea might function in long distance calling. It is argued thatT. fovea can survive making such a noise in spite of being palatable to bats because it flies so late in the year that it is temporally isolated from bats.Abbreviations PRR pulse repetition rate - SPL sound pressure level - BF best frequency  相似文献   
2.
In this work we discuss in some computational and analytical details the issue of half-metallicity in zig-zag graphene nanoribbons and nanoislands of finite width, i.e. the coexistence of metallic nature for electrons with one spin orientation and insulating nature for the electrons of opposite spin, which has been recently predicted from so-called first-principle calculations employing Density Functional Theory. It is mathematically demonstrated and computationally verified that, within the framework of non-relativistic and time-independent quantum mechanics, like the size-extensive spin-contamination to which it relates, half-metallicity is nothing else than a methodological artefact, due to a too approximate treatment of electron correlation in the electronic ground state.  相似文献   
3.
Lactobacillus gasseri K7 is a probiotic strain that produces bacteriocins gassericin K7 A and K7 B. In order to develop a real-time quantitative PCR assay for the detection of L. gasseri K7, 18 reference strains of the Lactobacillus acidophilus group and 45 faecal samples of adults who have never consumed strain K7 were tested with PCR using 14 pairs of primers specific for gassericin K7 A and K7 B gene determinants. Incomplete gassericin K7 A or K7 B gene clusters were found to be dispersed in different lactobacilli strains as well as in faecal microbiota. One pair of primers was found to be specific for the total gene cluster of gassericin K7A and one for gassericin K7B. The real-time PCR analysis of faecal samples spiked with K7 strain revealed that primers specific for the gene cluster of the gassericin K7 A were more suitable for quantitative determination than those for gassericin K7 B, due to the lower detection level. Targeting of the gassericin K7 A or K7 B gene cluster with specific primers could be used for detection and quantification of L. gasseri K7 in human faecal samples without prior cultivation. The results of this study also present new insights into the prevalence of bacteriocin-encoding genes in gastrointestinal tract.  相似文献   
4.
Immunocytochemistry is a powerful tool for detection and visualization of specific molecules in living or fixed cells, their localization and their relative abundance. One of the most commonly used fluorescent DNA dyes in immunocytochemistry applications is 4′,6-diamidino-2-phenylindole dihydrochloride, known as DAPI. DAPI binds strongly to DNA and is used extensively for visualizing cell nuclei. It is excited by UV light and emits characteristic blue fluorescence. Here, we report a phenomenon based on an apparent photoconversion of DAPI that results in detection of a DAPI signal using a standard filter set for detection of green emission due to blue excitation. When a sample stained with DAPI only was first imaged with the green filter set (FITC/GFP), only a weak cytoplasmic autofluorescence was observed. Next, we imaged the sample with a DAPI filter set, obtaining a strong nuclear DAPI signal as expected. Upon reimaging the same samples with a FITC/GFP filter set, robust nuclear fluorescence was observed. We conclude that excitation with UV results in a photoconversion of DAPI that leads to detection of DAPI due to excitation and emission in the FITC/GFP channel. This phenomenon can affect data interpretation and lead to false-positive results when used together with fluorochrome-labeled nuclear proteins detected with blue excitation and green emission. In order to avoid misinterpretations, extra precaution should be taken to prepare staining solutions with low DAPI concentration and DAPI (UV excitation) images should be acquired after all other higher wavelength images. Of various DNA dyes tested, Hoechst 33342 exhibited the lowest photoconversion while that for DAPI and Hoechst 33258 was much stronger. Different fixation methods did not substantially affect the strength of photoconversion. We also suggest avoiding the use of mounting medium with high glycerol concentrations since glycerol showed the strongest impact on photoconversion. This photoconversion effect cannot be avoided even when using narrow bandpass filter sets.  相似文献   
5.

Introduction

Human primary cells originating from different locations within the body could differ greatly in their metabolic phenotypes, influencing both how they act during physiological/pathological processes and how susceptible/resistant they are to a variety of disease risk factors. A novel way to monitor cellular metabolism is through cell energetics assays, so we explored this approach with human primary cell types, as models of sclerotic disorders.

Objectives

In order to better understand pathophysiological processes at the cellular level, our goals were to measure metabolic pathway activities of endothelial cells and fibroblasts, and determine their metabolic phenotype profiles.

Methods

Biolog Phenotype MicroArray? technology was used for the first time to characterize metabolic phenotypes of diverse primary cells. These colorimetric assays enable detection of utilization of 367 specific biochemical substrates by human endothelial cells from the coronary artery (HCAEC), umbilical vein (HUVEC) and normal, healthy lung fibroblasts (NHLF).

Results

Adenosine, inosine, d-mannose and dextrin were strongly utilized by all three cell types, comparable to glucose. Substrates metabolized solely by HCAEC were mannan, pectin, gelatin and prevalently tricarballylic acid. HUVEC did not show any uniquely metabolized substrates whereas NHLF exhibited strong utilization of sugars and carboxylic acids along with amino acids and peptides.

Conclusion

Taken together, we show for the first time that this simple energetics assay platform enables metabolic characterization of primary cells and that each of the three human cell types examined gives a unique and distinguishable profile.
  相似文献   
6.
7.
Enterococcus faecalis mevalonate kinase   总被引:1,自引:0,他引:1  
Gram-positive pathogens synthesize isopentenyl diphosphate, the five-carbon precursor of isoprenoids, via the mevalonate pathway. The enzymes of this pathway are essential for the survival of these organisms, and thus may represent possible targets for drug design. To extend our investigation of the mevalonate pathway in Enterococcus faecalis, we PCR-amplified and cloned into pET-28b the mvaK1 gene thought to encode mevalonate kinase, the fourth enzyme of the pathway. Following transformation of the construct EFK1-pET28b into Escherichia coli BL21(DE3) cells, the expressed C-terminally hexahistidine-tagged protein was purified on a nickel affinity support to apparent homogeneity. The purified protein catalyzed the divalent ion-dependent phosphorylation of mevalonate to mevalonate 5-phosphate. The specific activity of the purified kinase was 24 micromole/min/mg protein. Based on sedimentation velocity data, E. faecalis mevalonate kinase exists in solution primarily as a monomer with a mass of 32.2 kD. Optimal activity occurred at pH 10 and at 37 degrees C. Delta H(a) was 22 kcal/mole. Kinetic analysis suggested that the reaction proceeds via a sequential mechanism. K(m) values were 0.33 mM (mevalonate), 1.1 mM (ATP), and 3.3 mM (Mg(2+)). Unlike mammalian mevalonate kinases, E. faecalis mevalonate kinase utilized all tested nucleoside triphosphates as phosphoryl donors. ADP, but not AMP, inhibited the reaction with a K(i) of 2.7 mM.  相似文献   
8.
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.  相似文献   
9.
10.
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that facilitates the acidification of intracellular compartments in eukaryotic cells and plays an important role in receptor-mediated endocytosis, intracellular trafficking processes, and protein degradation. In this study we show that the C-terminal fragment of 350 residues of the regulatory subunit H (V1H) of the V-ATPase shares structural and functional homologies with the beta-chains of adaptor protein complexes. Moreover, the fragment is similar to a region in the beta-subunit of COPI coatomer complexes, which suggests the existence of a shared domain in these three different families of proteins. For beta-adaptins, this fragment binds to cytoplasmic di-leucine-based sorting motifs such as in HIV-1 Nef that mediate endocytic trafficking. Expression of this fragment in cells blocks the internalization of transmembrane proteins, which depend on di-leucine-based motifs, whereas mutation of the consensus sequence GEY only partly diminishes the recognition of the sorting motif. Based on recent structural analysis, our results suggest that the di-leucine-binding domain consists of a HEAT or ARM repeat protein fold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号