首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   8篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2014年   5篇
  2013年   7篇
  2012年   15篇
  2011年   10篇
  2010年   11篇
  2009年   6篇
  2008年   18篇
  2007年   9篇
  2006年   15篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   14篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有166条查询结果,搜索用时 31 毫秒
1.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.  相似文献   
2.
The double ring chaperonin GroEL binds unfolded protein, ATP, and GroES to the same ring, generating the cis ternary complex in which folding occurs within the cavity capped by GroES (cis folding). The functional role of ATP, however, remains unclear since several reports have indicated that ADP and AMPPNP (5'-adenylyl-beta,gamma-imidodiphosphate) are also able to support the formation of the cis ternary complex and the cis folding. To minimize the effect of contaminated ATP and adenylate kinase, we have included hexokinase plus glucose in the reaction mixtures and obtained new results. In ADP and AMPPNP, GroES bound quickly to GroEL but bound very slowly to the GroEL loaded with unfolded rhodanese or malate dehydrogenase. ADP was unable to support the formation of cis ternary complex and cis folding. AMPPNP supported cis folding of malate dehydrogenase to some extent but not cis folding of rhodanese. In the absence of hexokinase, apparent cis folding of rhodanese and malate dehydrogenase was observed in ADP and AMPPNP. Thus, the exclusive role of ATP in generation of the cis ternary complex is now evident.  相似文献   
3.
Homozygotes of the quail silver mutation, which have plumage color changes, also display a unique phenotype in the eye: during early embryonic development, the retinal pigment epithelium (RPE) spontaneously transdifferentiates into neural retinal tissue. Mitf is considered to be the responsible gene and to function similarly to the mouse microphthalmia mutation, and tissue interaction between RPE and surrounding mesenchymal tissue in organ culture has been shown to be essential for the initiation of the transdifferentiation process in which fibroblast growth factor (FGF) signaling is involved. The immunohistochemical results of the present study show that laminin and heparan sulfate proteoglycan, both acting as cofactors for FGF binding, are localized in the area of transdifferentiation of silver embryos much more abundantly than in wild-type embryos. More intense immunohistochemical staining with FGF-1 antibody, but not with FGF-2 antibody, is also found in the neural retina, RPE, and choroidal tissue of silver embryos than in wild-type embryos. HNK-1 immunohistochemistry revealed that clusters of HNK-1-positive cells (presumptive migrating neural crest cells) are frequently located around the developing eyes and in the posterior region of the silver embryonic eye. Finally, chick-quail chimerical eyes were made by grafting silver quail optic vesicles to chicken host embryos: in most cases, no transdifferentiation occurs in the silver RPE, but in a few cases, transdifferentiation occurs where silver quail cells predominate in the choroid tissue. These observations together with our previous in vitro study indicate that the silver mutation affects not only RPE cells but also cephalic neural crest cells, which migrate to the eye rudiment, and that these crest cells play an essential role in the transdifferentiation of RPE, possibly by modifying the FGF signaling pathway. The precise molecular mechanism involved in RPE-neural crest cell interaction is still unknown, and the quail silver mutation is considered to be a good experimental model for studying the role of neural crest cells in vertebrate eye development.  相似文献   
4.
Coupling of proton flow and rotation in the F(0) motor of ATP synthase was investigated using the thermophilic Bacillus PS3 enzyme expressed functionally in Escherichia coli cells. Cysteine residues introduced into the N-terminal regions of subunits b and c of ATP synthase (bL2C/cS2C) were readily oxidized by treating the expressing cells with CuCl(2) to form predominantly a b-c cross-link with b-b and c-c cross-links being minor products. The oxidized ATP synthases, either in the inverted membrane vesicles or in the reconstituted proteoliposomes, showed drastically decreased proton pumping and ATPase activities compared with the reduced ones. Also, the oxidized F(0), either in the F(1)-stripped inverted vesicles or in the reconstituted F(0)-proteoliposomes, hardly mediated passive proton translocation through F(0). Careful analysis using single mutants (bL2C or cS2C) as controls indicated that the b-c cross-link was responsible for these defects. Thus, rotation of the c-oligomer ring relative to subunit b is obligatory for proton translocation; if there is no rotation of the c-ring there is no proton flow through F(0).  相似文献   
5.
FtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore.  相似文献   
6.
Mutations in small heterodimer partner (SHP) and hepatocyte nuclear factor 4alpha (HNF4alpha) are associated with mild obesity and diabetes mellitus, respectively. Both receptors work together to determine the normal pancreatic beta-cell function. We examined their subcellular localization and interaction in living cells by tagging them with yellow and cyan variants of green fluorescent protein (GFP) variants. Expressed SHP resided only in the cytoplasm in COS-7 cells which lacks HNF4alpha, but predominantly in the nucleus in insulinoma cells (MIN6). HNF4alpha was localized exclusively in the nuclei of both cells, coexpressed with HNF4alpha in COS-7 cells, redistributed in the nucleus, depending on the amount of HNF4alpha. We found fluorescence resonance energy transfer between GFP-tagged SHP and HNF4alpha, indicating a specific close association between them in the nucleus. The results strongly suggest that SHP exists primarily in the cytoplasm and is translocated into the nucleus on interacting with its nuclear receptor partner HNF4alpha.  相似文献   
7.
In this work, we have studied a muscular control system under experimental conditions for analyzing the dynamic behavior of individual muscles and theoretical considerations for elucidating its control strategy. Movement of human limbs is achieved by joint torques and each torque is specified as the sum of torques generated by muscle forces. The behavior of individual muscles is controlled by the neural input which is estimated by means of an electromyogram (EMG). In this study, the EMGs for a flexor and an extensor are measured in elbow joint movements and the dynamic behavior of individual muscles is analyzed. As a result, it is verified that both a flexor and an extensor are activated throughout the entire movement and that the activation of muscles is controlled above a specific limit independent of the hand-held load. Subsequently, a system model for simulating elbow joint movements is developed which includes the muscle dynamic relationship between the neural input and the isometric force. The minimum limit of muscle activation that has been confirmed in experiments is provided as a constraint of the neural input and the criterion is defined by a derivative of the isometric force of individual muscles. The optimal trajectories formulated under these conditions are quantitatively compared with the experimentally observed trajectories, and the control strategy of a muscular control system is studied. Finally, a muscular control system in multi-joint arm movements is discussed with regard to the comparative analysis between observed and optimal trajectories. Received: 7 April 1999 / Accepted in revised form: 27 July 1999  相似文献   
8.
The neural retina and retinal pigment epithelium (RPE) diverge from the optic vesicle during early embryonic development. They originate from different portions of the optic vesicle, the more distal part developing as the neural retina and the proximal part as RPE. As the distal part appears to make contact with the epidermis and the proximal part faces mesenchymal tissues, these two portions would encounter different environmental signals. In the present study, an attempt has been made to investigate the significance of interactions between the RPE and mesenchymal tissues that derive from neural crest cells, using a unique quail mutant silver (B/B) as the experimental model. The silver mutation is considered to affect neural crest-derived tissues, including the epidermal melanocytes. The homozygotes of the silver mutation have abnormal eyes, with double neural retinal layers, as a result of aberrant differentation of RPE to form a new neural retina. Retinal pigment epithelium was removed from early embryonic eyes (before the process began) and cultured to see whether it expressed any phenotype characteristic of neural retinal cells. When RPE of the B/B mutant was cultured with surrounding mesenchymal tissue, neural retinal cells were differentiated that expressed markers of amacrine, cone or rod cells. When isolated RPE of the B/B mutant was cultured alone, it acquired pigmentation and did not show any property characteristic of neural retinal cells. The RPE of wild type quail always differentiated to pigment epithelial cells. In the presence of either acidic fibroblast growth factor (aFGF) or basic FGF (bFGF), the RPE of the B/B mutant differentiated to neural retinal cells in the absence of mesenchymal tissue, but the RPE of wild type embryos only did so in the presence of 10–40 times as much aFGF or bFGF. These observations indicate that genes responsible for the B/B mutation are expressed in the RPE as well as in those cells that have a role in the differentiation of neural crest cells. They further suggest that development of the neural retina and RPE is regulated by some soluble factor(s) that is derived from or localized in the surrounding embryonic mesenchyme and other ocular tissues, and that FGF may be among possible candidates.  相似文献   
9.
Motojima F  Yoshida M 《The EMBO journal》2010,29(23):4008-4019
The current mechanistic model of chaperonin-assisted protein folding assumes that the substrate protein in the cage, formed by GroEL central cavity capped with GroES, is isolated from outside and exists as a free polypeptide. However, using ATPase-deficient GroEL mutants that keep GroES bound, we found that, in the rate-limiting intermediate of a chaperonin reaction, the unfolded polypeptide in the cage partly protrudes through a narrow space near the GroEL/GroES interface. Then, the entire polypeptide is released either into the cage or to the outside medium. The former adopts a native structure very rapidly and the latter undergoes spontaneous folding. Partition of the in-cage folding and the escape varies among substrate proteins and is affected by hydrophobic interaction between the polypeptide and GroEL cavity wall. The ATPase-active GroEL with decreased in-cage folding produced less of a native model substrate protein in Escherichia coli cells. Thus, the polypeptide in the critical GroEL-GroES complex is neither free nor completely confined in the cage, but it is interacting with GroEL's apical region, partly protruding to outside.  相似文献   
10.
F1-ATPase is a rotary molecular motor in which the central γ subunit rotates inside a cylinder made of α3β3 subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting γ angle defined as 0°, phosphate is released at ∼200°, and ADP is released during quick rotation between 240° and 320° that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号