首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   10篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   10篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有129条查询结果,搜索用时 62 毫秒
1.
2.
In the present work we have analyzed the effect of prenatal ethanol exposure on the activity of several glial marker and functional enzymes during the development of astrocytes isolated from rat brain as well as in primary culture. The activity of marker enzymes glutamine synthetase and butylcholinesterase showed no differences between isolated astrocytes from 15 and 70 day old control rats. However, the activity of the membrane-bound enzymes (Na+K)ATPase and 5'-nucleotidase was higher in astrocytes from 70 day old control rats than in those from 15 day old animals. Although the pattern found in astrocytes from alcohol-exposed rats was similar to that of controls, the levels of activity of the enzymes were lower in alcoholic than in control animals. When control astrocytes in primary culture were used, the activity of (Na+K)ATPase and 5'-nucleotidase increased throughout the entire culture period. In contrast, the maximal activity of glutamine synthetase was found at 7 days of culture. Ethanol also induced a decrease in the activity of all enzymes, which was more evident at the end of the culture period. These results indicate that the activity of the enzyme markers analyzed increased mainly during the first weeks of life and remained constant after this period. By contrast, the membrane-bound enzymes studied showed a progressive increase with age. In conclusion, since these astrocyte enzymes are important in the regulation of several neuronal functions through the control of the composition of extracellular fluid, the effect of ethanol on their activities could explain some of the neuronal alterations reported in children and animals exposed to ethanol during development.  相似文献   
3.
In the present work we have analyzed, using immunoblotting and immunofluorescence techniques, the evolution of several cytoskeletal proteins during the development of astrocytes in primary culture. The effect of prenatal exposure to alcohol on these proteins was also evaluated. Microtubular protein -tubulin decreased approximately 47% from 4 to 7 days after which its content remained practically constant. Immunofluorescence studies showed also that the content of -tubulin was greater at day 4 of culture. This increase in fluorescence was coincident with the presence of globular particles which were found in interphase astrocytes and stained with both anti - and anti--tubulin. These structures appeared only in proliferating cells. Glial fibrillary acidic protein (GFAP) and vimentin were analyzed as intermediate filament (IF) proteins. GFAP, in cytoskeletal preparations, increased regularly for 14 days followed by a decrease to day 21. In contrast, vimentin showed a progressive increase throughout the entire culture period. Fluorescence studies revealed some differences between the IF distribution patterns of GFAP and vimentin.In astrocytes obtained from rats prenatally exposed to ethanol, decreases in the amounts of all the cytoskeletal proteins studied were found during the entire culture period. In these cells a striking disorganization of cytoskeleton was also observed. The alcohol-induced decrease of GFAP in cultured astrocytes was also found when this protein was studied in preparations from whole brain developed in vivo.Special issue dedicated to Dr. Santiago Grisolia  相似文献   
4.
Predicted increases in atmospheric concentration of carbon dioxide (CO2) coupled with increased temperatures and drought are expected to strongly influence the development of most of the plant species in the world, especially in areas with high risk of desertification like the Mediterranean basin. Helianthemum almeriense is an ecologically important Mediterranean shrub with an added interest because it serves as the host for the Terfezia claveryi mycorrhizal fungus, which is a desert truffle with increasingly commercial interest. Although both plant and fungi are known to be well adapted to dry conditions, it is still uncertain how the increase in atmospheric CO2 will influence them. In this article we have addressed the physiological responses of H. almeriense × T. claveryi mycorrhizal plants to increases in atmospheric CO2 coupled with drought and high vapor pressure deficit. This work reports one of the few estimations of mesophyll conductance in a drought deciduous Mediterranean shrub and evaluates its role in photosynthesis limitation. High atmospheric CO2 concentrations help desert truffle mycorrhizal plants to cope with the adverse effects of progressive drought during Mediterranean springs by improving carbon net assimilation, intrinsic water use efficiency and dispersal of the species through increased flowering events.  相似文献   
5.
Dalfó D  Marqués N  Albalat R 《The FEBS journal》2007,274(14):3739-3752
In vertebrates, multiple microsomal retinol dehydrogenases are involved in reversible retinol/retinal interconversion, thereby controlling retinoid metabolism and retinoic acid availability. The physiologic functions of these enzymes are not, however, fully understood, as each vertebrate form has several, usually overlapping, biochemical roles. Within this context, amphioxus, a group of chordates that are simpler, at both the functional and genomic levels, than vertebrates, provides a suitable evolutionary model for comparative studies of retinol dehydrogenase enzymes. In a previous study, we identified two amphioxus enzymes, Branchiostoma floridae retinol dehydrogenase 1 and retinol dehydrogenase 2, both candidates to be the cephalochordate orthologs of the vertebrate retinol dehydrogenase enzymes. We have now proceeded to characterize these amphioxus enzymes. Kinetic studies have revealed that retinol dehydrogenase 1 and retinol dehydrogenase 2 are microsomal proteins that catalyze the reduction of all-trans-retinaldehyde using NADH as cofactor, a remarkable combination of substrate and cofactor preferences. Moreover, evolutionary analysis, including the amphioxus sequences, indicates that Rdh genes were extensively duplicated after cephalochordate divergence, leading to the gene cluster organization found in several mammalian species. Overall, our data provide an evolutionary reference with which to better understand the origin, activity and evolution of retinol dehydrogenase enzymes.  相似文献   
6.
7.
8.
Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号