首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2006年   1篇
  2005年   5篇
  2003年   1篇
  2001年   1篇
  1990年   1篇
排序方式: 共有30条查询结果,搜索用时 525 毫秒
1.
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL‐specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican‐American individuals from extended pedigrees. We found that performance on all three distinct processing‐speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome‐wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10?03).  相似文献   
2.
Coastal systems worldwide deliver vital ecosystem services, such as biodiversity, carbon sequestration, and coastal protection. Effectivity of these ecosystem services increases when vegetation is present. Understanding the mechanisms behind vegetation establishment in bio‐geomorphic systems is necessary to understand their ability to recover after erosive events and potential adaptations to climate change. In this study, we examined how seed availability affects vegetation establishment in the salt marsh–intertidal flat transition zone: the area with capacity for lateral marsh expansion. This requires vegetation establishment; therefore, seed availability is essential. In a 6‐month field experiment, we simulated a before and after winter seed dispersal at two locations, the salt‐marsh vegetation edge and the intertidal flat, and studied seed retention, the seed bank, and the seed viability of three pioneer marsh species: Salicornia procumbens, Aster tripolium, and Spartina anglica. During winter storm conditions, all supplied seeds eroded away with the sediment surface layer. After winter, supplied seeds from all three species were retained, mostly at the surface while 9% was bioturbated downwards. In the natural seed bank, A. tripolium and S. anglica were practically absent while S. procumbens occurred more frequently. The viability of S. procumbens seeds was highest at the surface, between 80% and 90%. The viability quickly decreased with depth, although viable S. procumbens seeds occurred up to 15 cm depth. Only when seeds were supplied after winter, many S. procumbens and some S. anglica individuals did establish successfully in the transition zone. Viable seed availability formed a vegetation establishment threshold, even with a local seed source. Our results suggest that, although boundary conditions such as elevation, inundation, and weather conditions were appropriate for vegetation establishment in spring, the soil surface in winter can be so dynamic that it limits lateral marsh expansion. These insights can be used for designing effective nature‐based coastal protection.  相似文献   
3.
4.
5.
6.
After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.  相似文献   
7.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   
8.
Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets.  相似文献   
9.
The origin of organic matter in recent anoxic sediments of the alpine Lake Bled (NW Slovenia) was determined by analyzing the carbon isotope composition of lipid biomarkers, i.e. alkanes, alcohols, sterols and fatty acids, busing compound specific, carbon isotope analysis. The results indicate that, although biomarker analysis indicated mostly plankton and terrestrial sources for lipids, an important part of sedimentary lipids, especially sterols, are autochthonous, of anaerobic microbial (methanotrophic) origin. Marked differences were observed in δ13C values of lipid biomarkers in settling particles collected 2 m above the bottom, and in δ13C values determined in surface sediment. These results indicate that even some compounds found in both particulate organic matter and sediments are the same in terms of chemical structures, their sources can be different and thus, isotopic composition should be used as a complementary tool for source identification.  相似文献   
10.
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde + NAD+ + coenzyme A ↔ acetyl coenzyme A + NADH + H+), was expressed in the gpd1Δ gpd2Δ strain, anaerobic growth was restored by supplementation with 2.0 g liter−1 acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).Bioethanol production by Saccharomyces cerevisiae is currently, by volume, the single largest fermentation process in industrial biotechnology. A global research effort is under way to expand the substrate range of S. cerevisiae to include lignocellulosic hydrolysates of nonfood feedstocks (e.g., energy crops and agricultural residues) and to increase productivity, robustness, and product yield (for reviews see references 20 and 35). A major challenge relating to the stoichiometry of yeast-based ethanol production is that substantial amounts of glycerol are invariably formed as a by-product (24). It has been estimated that, in typical industrial ethanol processes, up to 4% of the sugar feedstock is converted into glycerol (24). Although glycerol also serves as a compatible solute at high extracellular osmolarity (10), glycerol production under anaerobic conditions is primarily linked to redox metabolism (34).During anaerobic growth of S. cerevisiae, sugar dissimilation occurs via alcoholic fermentation. In this process, the NADH formed in the glycolytic glyceraldehyde-3-phosphate dehydrogenase reaction is reoxidized by converting acetaldehyde, formed by decarboxylation of pyruvate to ethanol via NAD+-dependent alcohol dehydrogenase. The fixed stoichiometry of this redox-neutral dissimilatory pathway causes problems when a net reduction of NAD+ to NADH occurs elsewhere in the metabolism. Such a net production of NADH occurs in assimilation when yeast biomass is synthesized from glucose and ammonia (34). Under anaerobic conditions, NADH reoxidation in S. cerevisiae is strictly dependent on reduction of sugar to glycerol (34). Glycerol formation is initiated by reduction of the glycolytic intermediate dihydroxyacetone phosphate to glycerol-3-phosphate, a reaction catalyzed by NAD+-dependent glycerol-3-phosphate dehydrogenase. Subsequently, the glycerol-3-phosphate formed in this reaction is hydrolyzed by glycerol-3-phosphatase to yield glycerol and inorganic phosphate.The importance of glycerol production for fermentative growth of yeasts was already observed in the 1960s during studies of non-Saccharomyces yeasts that exhibit a so-called “Custers effect.” In such yeast species, which are naturally unable to produce glycerol, fermentative growth on glucose is possible only in the presence of an external electron acceptor that can be reduced via an NADH-dependent reaction (e.g., the reduction of acetoin to butanediol via NAD+-dependent butanediol dehydrogenase) (29). It was later shown that gpd1Δ gpd2Δ strains of S. cerevisiae, which are also unable to produce glycerol, are similarly unable to grow under anaerobic conditions unless provided with acetoin as an external electron acceptor (8).In view of its large economic significance, several metabolic engineering strategies have been explored to reduce or eliminate glycerol production in anaerobic cultures of S. cerevisiae. Nissen et al. (25) changed the cofactor specificity of glutamate dehydrogenase, the major ammonia-fixing enzyme of S. cerevisiae, thereby increasing NADH consumption in biosynthesis. This approach significantly reduced glycerol production in anaerobic cultures grown with ammonia as the nitrogen source. Attempts to further reduce glycerol production by expression of a heterologous transhydrogenase, with the aim to convert NADH and NADP+ into NAD+ and NADPH, were unsuccessful (24) because intracellular concentrations of these pyridine nucleotide cofactor couples favor the reverse reaction (23).The goal of the present study was to investigate whether the engineering of a linear pathway for the NADH-dependent reduction of acetic acid to ethanol can replace glycerol formation as a redox sink in anaerobic, glucose-grown cultures of S. cerevisiae and thus provide a stoichiometric basis for elimination of glycerol production during industrial ethanol production. Significant amounts of acetic acid are released upon hydrolysis of lignocellulosic biomass, and, in fact, acetic acid is studied as an inhibitor of yeast metabolism in lignocellulosic hydrolysates (5, 7, 26). The S. cerevisiae genome already contains genes encoding acetyl coenzyme A (acetyl-CoA) synthetase (32) and NAD+-dependent alcohol dehydrogenases (ADH1-5 [12]). To complete the linear pathway for acetic acid reduction, we expressed an NAD+-dependent, acetylating acetaldehyde dehydrogenase (EC 1.2.1.10) from Escherichia coli into a gpd1Δ gpd2Δ strain of S. cerevisiae. This enzyme, encoded by the E. coli mhpF gene (15), catalyzes the reaction acetaldehyde + NAD+ + coenzyme A ↔ acetyl coenzyme A + NADH + H+. Growth and product formation of the engineered strain were then compared in the presence and absence of acetic acid and compared to those of a congenic reference strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号