首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3062篇
  免费   316篇
  国内免费   1篇
  2021年   43篇
  2020年   30篇
  2019年   26篇
  2018年   27篇
  2017年   34篇
  2016年   48篇
  2015年   125篇
  2014年   109篇
  2013年   125篇
  2012年   182篇
  2011年   177篇
  2010年   123篇
  2009年   93篇
  2008年   150篇
  2007年   157篇
  2006年   158篇
  2005年   137篇
  2004年   143篇
  2003年   123篇
  2002年   141篇
  2001年   81篇
  2000年   61篇
  1999年   54篇
  1998年   36篇
  1997年   30篇
  1996年   30篇
  1995年   33篇
  1994年   47篇
  1993年   45篇
  1992年   63篇
  1991年   51篇
  1990年   47篇
  1989年   28篇
  1988年   27篇
  1987年   29篇
  1986年   25篇
  1985年   32篇
  1984年   27篇
  1983年   25篇
  1982年   18篇
  1981年   37篇
  1980年   31篇
  1978年   35篇
  1977年   17篇
  1976年   29篇
  1975年   24篇
  1974年   33篇
  1973年   27篇
  1972年   22篇
  1971年   25篇
排序方式: 共有3379条查询结果,搜索用时 15 毫秒
1.
2.
U Brandt  G von Jagow 《FEBS letters》1991,287(1-2):215-218
Cytochrome c reductase is inhibited by p-chlorophenyl-methoxybenzyl-ketoxime (CPMB-oxime). CPMB-oxime induces a red-shift of the reduced spectrum of cytochrome b. The inhibitor blocks the oxidation of ubihydroquinone at the QP center of this enzyme in a non-competitive way. The binding stoichiometry equals one inhibitor molecule per Qp center. The apparent Kd in a red-shift assay was 6.9 +/- 0.6 microM. All binding characteristics analysed in this study were very similar to those of the E-beta-methoxyacrylate inhibitors, although the chemical structure is different from these inhibitors. This result is interpreted as a support for the inhibitory mechanism based on the model of a 'catalytic switch' proposed recently for the E-beta-methoxyacrylate inhibitors (MOA-inhibitors (Brandt and von Jagow, Eur. J. Biochem.  相似文献   
3.
Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor - beta (TGFβ) signaling, the alveolar type II (ATII) epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM) signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5) will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS) leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung remodeling during fibrosis may be more susceptible than healthy individuals when exposed to environmental injury adjuvants.  相似文献   
4.
5.
6.
The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLU, Prozac®) is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured)) on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks) until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation) of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.  相似文献   
7.
The overproduction of specialized metabolites requires plants to manage the inherent burdens, including the risk of self-intoxication. We present a control mechanism that stops the expression of phytoalexin biosynthetic enzymes by blocking the antecedent signal transduction cascade. Cultured cells of Eschscholzia californica (Papaveraceae) and Catharanthus roseus (Apocynaceae) overproduce benzophenanthridine alkaloids and monoterpenoid indole alkaloids, respectively, in response to microbial elicitors. In both plants, an elicitor-responsive phospholipase A2 (PLA2) at the plasma membrane generates signal molecules that initiate the induction of biosynthetic enzymes. The final alkaloids produced in the respective plant inhibit the respective PLA, a negative feedback that prevents continuous overexpression. The selective inhibition by alkaloids from the class produced in the “self” plant could be transferred to leaves of Nicotiana benthamiana via recombinant expression of PLA2. The 3D homology model of each PLA2 displays a binding pocket that specifically accommodates alkaloids of the class produced by the same plant, but not of the other class; for example, C. roseus PLA2 only accommodates C. roseus alkaloids. The interaction energies of docked alkaloids correlate with their selective inhibition of PLA2 activity. The existence in two evolutionary distant plants of phospholipases A2 that discriminate “self-made” from “foreign” alkaloids reveals molecular fingerprints left in signal enzymes during the evolution of species-specific, cytotoxic phytoalexins.  相似文献   
8.
9.
10.
Whole-body autoradiography of 14C-labelled 3-methylsulphonyl-DDE (3-MeSO2-DDE) in female C57BL mice revealed a heavy accumulation in the adrenal cortex. Fairly high radioactivity appeared in the nasal mucosa and fat, while the labelling of the liver was intermediate. The adrenal radioactivity remained largely unextracted in tissue-sections treated with organic solvents. In the liver and intestinal contents the radioactivity was partly extracted, whereas in all other tissues almost completely extracted. According to light microscopic autoradiography, the tissue-bound adrenal radioactivity was confined to the zona fasciculata, leaving the other adrenal zones devoid of bound material. Incubation of 3-MeSO2-DDE with adrenal tissue (300 X g supernatant) revealed a dose- and time-dependent covalent binding to protein and formation of water-soluble metabolites. The cytochrome P-450 inhibitors metyrapone and carbon monoxide inhibited both covalent binding and polar metabolite formation. Addition of reduced glutathione decreased binding, while polar metabolite formation was increased. Histopathological examination of adrenals from 3-MeSO2-DDE-treated mice revealed extensive vacuolation and necrosis of the zona fasciculata 1-12 days after single doses down to 25 mg/kg. Degenerative changes were observed at 12.5 mg/kg. In contrast to 3-MeSO2-DDE, 14C-labelled 3,3'-bis(methylsulphonyl)-DDE was not accumulated in the adrenal cortex. 3-MeSO2-DDE is thus a persistent environmental pollutant with a unique ability to produce acute toxicity subsequent to metabolic activation in a mammalian tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号