首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
Aedes aegypti has developed evolution-driven adaptations for surviving in the domestic human habitat. Several trap models have been designed considering these strategies and tested for monitoring this efficient vector of Dengue. Here, we report a real-scale evaluation of a system for monitoring and controlling mosquito populations based on egg sampling coupled with geographic information systems technology. The SMCP-Aedes, a system based on open technology and open data standards, was set up from March/2008 to October/2011 as a pilot trial in two sites of Pernambuco -Brazil: Ipojuca (10,000 residents) and Santa Cruz (83,000), in a joint effort of health authorities and staff, and a network of scientists providing scientific support. A widespread infestation by Aedes was found in both sites in 2008–2009, with 96.8%–100% trap positivity. Egg densities were markedly higher in SCC than in Ipojuca. A 90% decrease in egg density was recorded in SCC after two years of sustained control pressure imposed by suppression of >7,500,000 eggs and >3,200 adults, plus larval control by adding fishes to cisterns. In Ipojuca, 1.1 million mosquito eggs were suppressed and a 77% reduction in egg density was achieved. This study aimed at assessing the applicability of a system using GIS and spatial statistic analysis tools for quantitative assessment of mosquito populations. It also provided useful information on the requirements for reducing well-established mosquito populations. Results from two cities led us to conclude that the success in markedly reducing an Aedes population required the appropriate choice of control measures for sustained mass elimination guided by a user-friendly mosquito surveillance system. The system was able to support interventional decisions and to assess the program’s success. Additionally, it created a stimulating environment for health staff and residents, which had a positive impact on their commitment to the dengue control program.  相似文献   
2.
Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1 +/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host response to Salmonella infection in Ank1 mutants.  相似文献   
3.
4.

Introduction

The microenvironment surrounding inflamed synovium leads to the activation of fibroblast-like synoviocytes (FLSs), which are important contributors to cartilage destruction in rheumatoid arthritic (RA) joints. Transglutaminase 2 (TG2), an enzyme involved in extracellular matrix (ECM) cross-linking and remodeling, is activated by inflammatory signals. This study was undertaken to assess the potential contribution of TG2 to FLS-induced cartilage degradation.

Methods

Transglutaminase (TGase) activity and collagen degradation were assessed with the immunohistochemistry of control, collagen-induced arthritic (CIA) or TG2 knockdown (shRNA)-treated joint tissues. TGase activity in control (C-FLS) and arthritic (A-FLS) rat FLSs was measured by in situ 5-(biotinamido)-pentylamine incorporation. Invadopodia formation and functions were measured in rat FLSs and cells from normal (control; C-FLS) and RA patients (RA-FLS) by in situ ECM degradation. Immunoblotting, enzyme-linked immunosorbent assay (ELISA), and p3TP-Lux reporter assays were used to assess transforming growth factor-β (TGF-β) production and activation.

Results

TG2 and TGase activity were associated with cartilage degradation in CIA joints. In contrast, TGase activity and cartilage degradation were reduced in joints by TG2 knockdown. A-FLSs displayed higher TGase activity and TG2 expression in ECM than did C-FLSs. TG2 knockdown or TGase inhibition resulted in reduced invadopodia formation in rat and human arthritic FLSs. In contrast, increased invadopodia formation was noted in response to TGase activity induced by TGF-β, dithiothreitol (DTT), or TG2 overexpression. TG2-induced increases in invadopodia formation were blocked by TGF-β neutralization or inhibition of TGF-βR1.

Conclusions

TG2, through its TGase activity, is required for ECM degradation in arthritic FLS and CIA joints. Our findings provide a potential target to prevent cartilage degradation in RA.  相似文献   
5.
Caves are perceived as isolated, extreme habitats with a uniquely specialized biota, which long ago led to the idea that caves are “evolutionary dead‐ends.” This implies that cave‐adapted taxa may be doomed for extinction before they can diversify or transition to a more stable state. However, this hypothesis has not been explicitly tested in a phylogenetic framework with multiple independently evolved cave‐dwelling groups. Here, we use the freshwater crayfish, a group with dozens of cave‐dwelling species in multiple lineages, as a system to test this hypothesis. We consider historical patterns of lineage diversification and habitat transition as well as current patterns of geographic range size. We find that while cave‐dwelling lineages have small relative range sizes and rarely transition back to the surface, they exhibit remarkably similar diversification patterns to those of other habitat types and appear to be able to maintain a diversity of lineages through time. This suggests that cave adaptation is not a “dead‐end” for freshwater crayfish, which has positive implications for our understanding of biodiversity and conservation in cave habitats.  相似文献   
6.
7.
Taeniid cestodes infect humans and livestock, causing considerable morbidity and mortality, as well as economic loss. Substantial progress has been made toward the production of recombinant vaccines against cysticercosis in livestock animals. Further development of these vaccines would be aided if a reliable in vitro test were available to measure host-protective immune responses in vaccinated animals. Here, we describe in vitro oncosphere-killing assays for the quantification of host-protective serum antibodies against Taenia pisiformis, Taenia ovis, Taenia saginata, and Taenia solium in rabbits, sheep, cattle, and pigs, respectively. Activated oncospheres of T. pisiformis, T. ovis, T. saginata, and T. solium were incubated in vitro in culture medium, test serum, and a source of complement, and oncosphere killing was assessed after 10 days of culture. In vitro oncosphere killing reflected the presence of specific antibody, and the oncosphere-killing assay typically indicated immunity to the homologous parasite that had been determined in vivo. This study describes the first reliable oncosphere-killing assays for T. pisiformis, T. ovis, T. saginata, and T. solium. These assays will be used for further research into the optimization of recombinant vaccines against cysticercosis.  相似文献   
8.
9.
The Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS. Here we show that CUX1 functions in base excision repair as an ancillary factor for the 8-oxoG-DNA glycosylase, OGG1. Single cell gel electrophoresis (comet assay) reveals that Cux1+/− MEFs are haploinsufficient for the repair of oxidative DNA damage, whereas elevated CUX1 levels accelerate DNA repair. In vitro base excision repair assays with purified components demonstrate that CUX1 directly stimulates OGG1''s enzymatic activity. Elevated reactive oxygen species (ROS) levels in cells with sustained RAS pathway activation can cause cellular senescence. We show that elevated expression of either CUX1 or OGG1 prevents RAS-induced senescence in primary cells, and that CUX1 knockdown is synthetic lethal with oncogenic RAS in human cancer cells. Elevated CUX1 expression in a transgenic mouse model enables the emergence of mammary tumors with spontaneous activating Kras mutations. We confirmed cooperation between KrasG12V and CUX1 in a lung tumor model. Cancer cells can overcome the antiproliferative effects of excessive DNA damage by inactivating a DNA damage response pathway such as ATM or p53 signaling. Our findings reveal an alternate mechanism to allow sustained proliferation in RAS-transformed cells through increased DNA base excision repair capability. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号