首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2015年   2篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有44条查询结果,搜索用时 93 毫秒
1.
The reactivity of a monoclonal antibody BuGR1, raised against glucocorticoid receptors of rat liver, with glucocorticoid and mineralocorticoid receptors of mammalian (rabbit) and amphibian (A6 cells) origin was examined. The glucocorticoid receptors of rabbit kidney and liver and of A6 cells were labeled with tritiated dexamethasone. The mineralocorticoid receptors were labeled with tritiated aldosterone in the presence or absence of RU26988, depending on whether aldosterone was bound to glucocorticoid receptors (A6 cells) or not (rabbit kidney), in addition to its binding to mineralocorticoid receptors. BuGR1 did not recognize mineralocorticoid receptors of A6 cells and rabbit kidney. BuGR1 cross-reacted with glucocorticoid receptors of rabbit liver and kidney but not of A6 cells, suggesting that the domain of glucocorticoid receptors recognized by BuRG1 could be present only in the mammalian species. The findings indicate that BuGR1 shows species differences as well as receptor class specificity.  相似文献   
2.
Corticosteroid derivatives coupled in the C3, C7 or C17 position with a long aliphatic chain were synthesized in order to select a suitable ligand for the preparation of a biospecific affinity adsorbent for mineralocorticoid receptor purification. The affinity of these derivatives for mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) was explored in rabbit kidney cytosol. In this model, aldosterone bound to a single class of receptors with high affinity (Kd 1 nM) and mineralocorticoid specificity. RU26988, a highly specific ligand for GR, did not compete for these sites. The C7 and C17 positions were found to be of crucial importance in the steroid's interaction with the mineralocorticoid receptors, since the linkage of a long side chain in these positions induced complete loss of affinity. Hence, deoxycorticosterone no longer bound to MR after 17 beta substitution with a 9-carbon aliphatic chain. This loss of affinity was not observed for glucocorticoids. The 17 beta nonylamide derivative of dexamethasone still competed for GR. Increasing the length of the C7 side of the spirolactone SC26304 suppressed its affinity for MR. Finally, C3 was an appropriate position for steroid substitution. The 3-nonylamide of carboxymethyloxime deoxycorticosterone bound to MR but not to GR, and therefore constitutes a suitable ligand for the preparation of a mineralocorticoid adsorbent.  相似文献   
3.
The numbers of type I and type II aldosterone receptors in the kidney cytosol of adrenalectomized rats were estimated after animals were treated with various steroids, or fed with high or low potassium diets. Oestradiol and 5 beta-pregnane-3,20 dione, which exhibited no affinity for aldosterone receptors, did not modify the levels of type I or type II receptors. Cortisol, corticosterone, progesterone and spirolactones, which all competed with aldosterone for both types of receptor, reduced the number of type I sites, as does aldosterone itself. Steroid treatment has no appreciable effect on type II receptors. We conclude that type I receptors are modulated by steroids able to bind to aldosterone receptors and that steroid-receptor interaction is an essential step in the receptor modulation process. The effects of potassium on aldosterone receptor modulation were tested in adrenalectomized rats on hypo- or hyperkalaemic diets. No change in receptor levels was observed in the rats on a low potassium diet, but the number of type I receptors increased in animals on a high potassium diet. However, the effects of potassium on receptor modulation were of lesser magnitude than those of aldosterone agonists and antagonists.  相似文献   
4.
Aldosterone and cortisol, the major mineralocorticoid and glucocorticoid hormones in humans, are structurally very closed. Both hormones bind to the mineralocorticoid receptor (MR) with the same affinity. Nevertheless MR is preferentially activated by aldosterone, suggesting that the binding of these two hormones to MR involved some distinct contacts. We constructed a tridimensional model of the ligand-binding domain of the human MR, by taking as a template the structural data of the retinoid receptor associated with its ligand. The MR model allowed the identification of several residues involved in the interaction with aldosterone and cortisol. The residues Gln 776 and Arg 817 make hydrogen bonds with the 3-keto function and the residue Asn 770 with the C21-hydroxyl group. Analyses of the wild type and mutant MRs activities in response to corticosteroids bearing hydroxyl groups at various steroid skeleton position led to the following conclusions: 1) the interaction between the residue Asn 770 and the C21-hydroxyl group of corticosteroids is determinant for stabilizing the active MR conformation and 2) the stability of this conformation is enhanced by the 11-18 hemiketal group of aldosterone whereas it is decreased by the 11 beta- and 17 alpha-hydroxyl groups of cortisol. These results are discussed in the light of a model for the MR activation process.  相似文献   
5.
Limited proteolysis experiments were performed to study conformation changes induced by ligand binding on in vitro produced wild-type and I747T mutant glucocorticoid receptors. Dexamethasone-induced conformational changes were characterized by two resistant proteolysis fragments of 30 and 27 kDa. Although dexamethasone binding affinity was only slightly altered by the I747T substitution (Roux, S., Térouanne, B., Balaguer, P., Loffreda-Jausons, N., Pons, M., Chambon, P., Gronemeyer, H., and Nicolas, J.-C. (1996) Mol. Endocrinol. 10, 1214-1226), higher dexamethasone concentrations were required to obtain the same proteolysis pattern. This difference was less marked when proteolysis experiments were conducted at 0 degrees C, indicating that a step of the conformational change after ligand binding was affected by the mutation. In contrast, RU486 binding to the wild-type receptor induced a different conformational change that was not affected by the mutation. Analysis of proteolysis fragments obtained in the presence of dexamethasone or RU486 indicated that the RU486-induced conformational change affected the C-terminal part of the ligand binding domain differently. These data suggest that the ligand-induced conformational change occurs via a multistep process. In the first step, characterized by compaction of the ligand binding domain, the mutation has no effect. The second step, which stabilizes the activated conformation and does not occur at 4 degrees C, seems to be a key element in the activation process that can be altered by the mutation. This step could involve modification of the helix H12 position, explaining why the conformation induced by RU486 is not affected by the mutation.  相似文献   
6.
E2F factors are implicated in various cellular processes including specific gene induction at the G1/S transition of the cell cycle. We present in this study a novel regulatory aspect for the tobacco large subunit of ribonucleotide reductase (R1a) and its encoding gene (RNR1a) in the UV-C response. By structural analyses, two E2F sites were identified on the promoter of this gene. Functional analysis showed that, in addition to their role in the specific G1/S induction of the RNR1a gene, both E2F sites were important for regulating specific RNR1a gene expression in response to UV-C irradiation in non-synchronized and synchronized cells. Concomitantly, western blot and cellular analyses showed an increase of a 60 kDa E2F factor and a transient translocation of a GFP-R1a protein fusion from cytoplasm to nucleus in response to UV irradiation.  相似文献   
7.
8.
Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects. Finerenone, a novel nonsteroidal MR antagonist, is presently being evaluated in two clinical phase IIb trials. Here, we characterized the molecular mechanisms of action of finerenone and spironolactone at several key steps of the MR signaling pathway. Molecular modeling and mutagenesis approaches allowed identification of Ser-810 and Ala-773 as key residues for the high MR selectivity of finerenone. Moreover, we showed that, in contrast to spironolactone, which activates the S810L mutant MR responsible for a severe form of early onset hypertension, finerenone displays strict antagonistic properties. Aldosterone-dependent phosphorylation and degradation of MR are inhibited by both finerenone and spironolactone. However, automated quantification of MR subcellular distribution demonstrated that finerenone delays aldosterone-induced nuclear accumulation of MR more efficiently than spironolactone. Finally, chromatin immunoprecipitation assays revealed that, as opposed to spironolactone, finerenone inhibits MR, steroid receptor coactivator-1, and RNA polymerase II binding at the regulatory sequence of the SCNN1A gene and also remarkably reduces basal MR and steroid receptor coactivator-1 recruitment, unraveling a specific and unrecognized inactivating mechanism on MR signaling. Overall, our data demonstrate that the highly potent and selective MR antagonist finerenone specifically impairs several critical steps of the MR signaling pathway and therefore represents a promising new generation MR antagonist.  相似文献   
9.
The promoters of several E2F-regulated genes identified in plants contain a variety of E2F motifs, notably a composite element consisting of a "CDE-like element" C/GGCGG on one strand, described as repressor in animals, associated with an E2F element on the complementary strand. This detailed study throughout plant development using ribonucleotide reductase promoters, allows us to propose a model, where E2F and composite elements play a dual role. Such regulation is mainly conditioned by the availability of E2F factors in tissues and during the cell cycle in tobacco.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号