首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
3.
4.
Predator-driven divergent selection may cause differentiation in defensive armor in threespine stickleback: (1) predatory fish and birds favor robust armor, whereas (2) predaceous aquatic insects favor armor reduction. Although (1) is well established, no direct experimental evidence exists for (2). I examined the phenotypic and genetic consequences of insect predation using F2 families from crosses between freshwater and marine stickleback populations. I measured selection on body size, and size-adjusted spine (dorsal and pelvic) and pelvic girdle length, by splitting juvenile F2 families between control and insect predation treatments, set in pond enclosures. I also examined the effect of insect predation on Ectodysplasin ( Eda ), a gene physically linked to quantitative trait loci for lateral plate number, spine length, and body shape. Insect predation resulted in: (1) significant selection for larger juvenile size, and shorter dorsal spine and pelvic girdle length, (2) higher mortality of individuals missing the pelvic girdle, and (3) selection in favor of the low armor Eda allele. Predatory insects favor less stickleback armor, likely contributing to the widespread reduction of armor in freshwater populations. Because size strongly influences mate choice, predator-driven divergent selection on size may play a substantial role in byproduct reproductive isolation and speciation in threespine stickleback.  相似文献   
5.
Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.  相似文献   
6.
This study was undertaken in order to examine whether any connection existed between the amounts of iron in forage and the sporadic occurrence of scrapie observed in certain parts of Iceland. As iron and manganese are considered antagonistic in plants, calculation of the Fe/Mn ratios was also included by using results from Mn determination earlier performed in the same samples. Forage samples (n = 170) from the summer harvests of 2001–2003, were collected from 47 farms for iron and manganese analysis. The farms were divided into four categories: 1. Scrapie-free farms in scrapie-free areas (n = 9); 2. Scrapie-free farms in scrapie-afflicted areas (n = 17); 3. Scrapie-prone farms (earlier scrapie-afflicted, restocked farms) (n = 12); 4. Scrapie-afflicted farms (n = 9). Farms in categories 1 and 2 are collectively referred to as scrapie-free farms. The mean iron concentration in forage samples from scrapie-afflicted farms was significantly higher than in forage samples from farms in the other scrapie categories (P = 0.001). The mean Fe/Mn ratio in forage from scrapie-afflicted farms was significantly higher than in forage from scrapie-free and scrapie-prone farms (P < 0.001). The results indicated relative dominance of iron over manganese in forage from scrapie-afflicted farms as compared to farms in the other categories. Thus thorough knowledge of iron, along with manganese, in soil and vegetation on sheep farms could be a pivot in studies on sporadic scrapie.  相似文献   
7.
Abstract.— The precise dependence of barnacle leg form on flow suggests the wave-swept environment imposes strong selection on suspension feeding limbs. I conducted three experiments to determine the mechanism, age dependence, and response time of cirrus variation in the acorn barnacle Balanus glandula . (1) To test whether cirrus variation arises via genetic or environmental mechanisms, I transplanted juvenile barnacles from one wave-exposed and one protected population into high and low flow conditions. Both populations exhibited similar abilities to modify cirri in response to experimental velocities: transplanted barnacles grew legs up to 84% longer in low flow. A small (up to 24%), but significant difference between source populations suggested slight genetic divergence in leg form. (2) Because flow is heterogeneous over space and time, I tested whether cirrus plasticity was limited to juveniles by transplanting both juveniles and adults from exposed and protected shores into quiet water. Remarkably, both juveniles and adults from the wave-exposed population produced legs over 100% longer than the original population, whereas protected barnacles remained unchanged. (3) A third transplant of adults into quiet water demonstrated that wave-exposed B. glandula modified cirrus form very quickly-within 18 days, or one to two molts. Results from these experiments suggest that variation in cirrus form is largely environmentally induced, but genetic differences may account for some variation observed among field populations; spatial and temporal flow heterogeneity appear to have selected for extreme flexibility of feeding form throughout a barnacle's life; and flow heterogeneity in the wave-swept environment appears to have selected for rapid ecophenotypic responses in the form of feeding structures.  相似文献   
8.
Vomeronasal organs from female rats were dissociated and isolated microvillous receptor neurons were studied. The isolated receptor neurons kept the typical bipolar shape which they have in situ as observed by scanning electron microscopy. We applied the perforated patch-clamp technique using the cation-selective ionophore gramicidin on freshly isolated and well differentiated receptor neurons. The mean resting potential was -58+/-14 mV (n=39). The contribution of the sodium pump current to the resting potential was demonstrated by lowering the K+ concentration in the bath or by application of 100 microM dihydro-ouabain. The input resistance was in the range of 1-6 GOmega and depolarizing current pulses of a few pA were sufficient to trigger overshooting action potentials. In voltage clamp conditions a fast transient sodium inward current and a sustained outward potassium current were activated by membrane depolarization. These observations indicate that freshly isolated vomeronasal receptor neurons of rats can be recorded, using gramicidin, with little modification of the intracellular content. Their electrophysiological properties are very similar to those observed in situ. Four out of eight female vomeronasal receptor cells were depolarized by diluted rat male urine.   相似文献   
9.
Wave-exposure influences the form of many organisms. Curiously, the impact of flow extremes on feeding structures has received little attention. Barnacles extend feather-like legs to feed, and prior work revealed a highly precise association between leg length and water velocity in one species. To assess the generality of this flow-dependence, we quantified variation in four leg traits (ramus length, ramus diameter, seta length, and intersetal spacing) in four intertidal barnacles (Balanus glandula, Chthamalus dalli, Semibalanus cariosus, Pollicipes polymerus) over a wave-exposure gradient in the North-Eastern Pacific. All species exhibited a negative allometric relation between leg length and body mass. Proportionally longer feeding legs may permit smaller barnacles to avoid lower flow and particle flux associated with boundary layers. Although coefficients of allometry did not vary with wave-exposure, form differences among wave-exposures were substantial. Depending on the species, acorn barnacles of the same size from protected shores had feeding legs that were 37-80% longer and 18-25% thinner, and setae that were 36-50% longer and up to 25% more closely spaced, than those from exposed shores. Differences were less pronounced for the gooseneck barnacle, P. polymerus. Moreover, in situ water velocity explained an impressive percentage of overall leg-length variation: 92% in B. glandula, 67% in C. dalli, 91% in S. cariosus, and 92% in P. polymerus. Clearly, both size and shape of barnacle feeding legs respond to local flow conditions. This response appears widespread--across two orders of thoracican barnacles, Pedunculata and Sessilia, and two superfamilies of acorn barnacles (Balanoidea and Chthamaloidea)--and likely adaptive. Longer rami and setae would yield a larger feeding area in low flow, whereas shorter, stouter rami with shorter setae would be less vulnerable to damage in high flow. Finally, the proportionally most variable species was abundant in the widest range of habitats, suggesting that increased plasticity may permit a wider niche breadth.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号