首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  68篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
2.
3.
We have reported that centrifuge-induced artificial gravity with ergometric exercise could reduce developing cardiovascular deconditioning in humans. In the present study, we examined this load could prevent the myatrophy and osteoporosis induced by head-down bedrest for 20 days. Subjects were ten healthy male volunteers with informed consent. They were requested to lie down at -6 degrees for 20 days, and evaluation for cardiovascular deconditioning, myatrophy, and osteoporosis. As the result, high G-load with low intensity exercise suppressed the orthostatic intolerance and increase in serum osteoporotic marker, whereas low G-load with high intensity ergometric exercise maintained the maximal oxygen intake, heart dimension, and prevented myatrophy. The combination of high/low G-load with low/high intensity exercise will determine the optimal protocol for prevention of cardiovascular deconditioning, myatrophy, and osteoporosis.  相似文献   
4.
We investigated in six men the impact of 17 days of head-down bed rest (HDBR) on the daily rhythms of the hormones involved in hydroelectrolytic regulation. This HDBR study was designed to mimic a real space flight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of Growth Hormone (GH), Cortisol, 6 Sulfatoxymelatonin, Normetadrenaline (NMN) and Metadrenaline (NM) was determined. A decrease in urinary cortisol excretion during the night of HDBR was noted. For GH, a rhythm was found before and during HDBR. The rhythm of melatonin, evaluated with the urine excretion of 6 Sulfatoxymelatonin (aMT6S), the main hepatic metabolite, persisted throughout the experiment without any modification to the level of phase. A decrease during the night was noted for normetadrenaline urinary derivates, but only during the HDBR.  相似文献   
5.
Mitochondrial role in ceramide-induced apoptosis pathway remains unclear. Direct effects of ceramide on mitochondria (cytochrome c release, respiratory chain inhibition, oxygen radicals production...) have been reported [1, 2] and we previously showed that addition of ceramide to intact cells or isolated mitochondria triggers mitochondrial swelling which appeared to be insensitive to cyclosporin A (CsA) [3, 4]. The purpose of this work was to determine to which extent this CsA-insensitive mitochondrial swelling, therefore distinct from permeability transition, participates to ceramide-induced apoptosis. To achieve this, we applied Top-Down analysis of integrated mitochondrial function [5], in order to better understand ceramide-induced mitochondrial dysfunctions.  相似文献   
6.
Western Blot and immunohistochemical studies were conducted in the sea pansy Renilla koellikeri, a representative of the earliest multicellular animals with a nervous system, using various antibodies raised against enzymes of the catecholamine biosynthetic pathway. Western blots of sea pansy extracts revealed a protein band that co-migrated with dopamine-beta-hydroxylase (DBH) from mouse adrenal glands. Similar experiments with antisera against tyrosine hydroxylase (TH) revealed several immunoreactive protein bands, all of larger molecular weight than mammalian tyrosine hydroxylase. DBH-like and, to a lesser extent, TH-like and phenylethanolamine N-methyltransferase-like immunoreactivities were detected in ectodermal sensory neurons and associated subectodermal neurites, in neurons of the mesogleal nerve-net and associated amoebocytes, and in some endodermal neurons. While it is still not clear whether the detected TH-immunoreactive proteins represent some form of TH, the presence in sea pansies of a DBH-like protein is in agreement with previously detected norepinephrine-like immunoreactivity in the same species. The widespread distribution of these immunoreactivities in various sea pansy neurons suggests important roles for catecholamines in nerve net activity.  相似文献   
7.
In recent years, increased interest in the origin of protein thermal stability has gained attention both for its possible role in understanding the forces governing the folding of a protein and for the design of new highly stable engineered biocatalysts. To study the origin of thermostability, we have performed molecular dynamics simulations of two rubredoxins, from the mesophile Clostridium pasteurianum and from the hyperthermophile Pyrococcus furiosus. The simulations were carried out at two temperatures, 300 and 373 K, for each molecule. The length of the simulations was within the range of 6-7.2 ns. The rubredoxin from the hyperthermophilic organism was more flexible than its mesophilic counterpart at both temperatures; however, the overall flexibility of both molecules at their optimal growth temperature was the same, despite 59% sequence homology. The conformational space sampled by both molecules was larger at 300 K than at 373 K. The essential dynamics analysis showed that the principal overall motions of the two molecules are significantly different. On the contrary, each molecule showed similar directions of motion at both temperatures.  相似文献   
8.
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014–2015 West African outbreak variant (Makona).  相似文献   
9.
Cell motility is important for many developmental and physiological processes. Motility arises from interactions between physical forces at the cell surface membrane and the biochemical reactions that control the actin cytoskeleton. To computationally analyze how these factors interact, we built a three-dimensional stochastic model of the experimentally observed isotropic spreading phase of mammalian fibroblasts. The multiscale model is composed at the microscopic levels of three actin filament remodeling reactions that occur stochastically in space and time, and these reactions are regulated by the membrane forces due to membrane surface resistance (load) and bending energy. The macroscopic output of the model (isotropic spreading of the whole cell) occurs due to the movement of the leading edge, resulting solely from membrane force-constrained biochemical reactions. Numerical simulations indicate that our model qualitatively captures the experimentally observed isotropic cell-spreading behavior. The model predicts that increasing the capping protein concentration will lead to a proportional decrease in the spread radius of the cell. This prediction was experimentally confirmed with the use of Cytochalasin D, which caps growing actin filaments. Similarly, the predicted effect of actin monomer concentration was experimentally verified by using Latrunculin A. Parameter variation analyses indicate that membrane physical forces control cell shape during spreading, whereas the biochemical reactions underlying actin cytoskeleton dynamics control cell size (i.e., the rate of spreading). Thus, during cell spreading, a balance between the biochemical and biophysical properties determines the cell size and shape. These mechanistic insights can provide a format for understanding how force and chemical signals together modulate cellular regulatory networks to control cell motility.  相似文献   
10.
To study the effects of microgravity on the mechanisms involved in the regulation of body hydrous status, total body water (TBW), plasma volume (PV), and its main regulating hormones (plasma renin, aldosterone, atrial natriuretic peptide (ANP), anti-diuretic hormone (ADH)) were determined, by isotopic dilution, Dill and Costill's formula, and radio-immunologic dosages, in 9 male subjects submitted to a 90-d head-down bed rest (HDBR). ADH was determined in 24 h urinary collection as well as osmolality, sodium, and potassium. Body mass decreased (-2.8 +/- 0.8 kg) as well as TBW(-7.2% +/- 0.9%, i.e., -2.6 +/- 0.7 kg) and PV (-4.7% +/- 1.8%). Renin and aldosterone were enhanced (+109.0% +/- 15.4% and +87.2% +/- 38.9%, respectively). Simultaneously, we observed a decrease in ANP (-33.2% +/- 20.4%). Other variables, including ADH, were not affected by HDBR. Body mass and TBW decrease (and consequently lean body mass) are associated with muscle atrophy. Renin, aldostrerone, and ANP modifications are well explained by the decrease in PV, which was not enough to induce ADH changes. It suggests that in man, the main regulatory factor for ADH secretion is osmolality, when PV is modestly and progressively decreased without arterial pressure modification, which was the case in the present protocol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号