首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
排序方式: 共有50条查询结果,搜索用时 81 毫秒
1.
Drug-induced liver injury (DILI) is an adverse outcome of the currently used tuberculosis treatment regimen, which results in patient noncompliance, poor treatment outcomes, and the emergence of drug-resistant tuberculosis. DILI is primarily caused by the toxicity of the drugs and their metabolites, which affect liver cells, biliary epithelial cells, and liver vasculature. However, the precise mechanism behind the cellular damage attributable to first-line antitubercular drugs (ATDs), as well as the effect of toxicity on the cell survival strategies, is yet to be elucidated. In the current study, HepG2 cells upon treatment with a high concentration of ATDs showed increased perforation within the cell, cuboidal shape, and membrane blebbing as compared with control/untreated cells. It was observed that ATD-induced toxicity in HepG2 cells leads to altered mitochondrial membrane permeability, which was depicted by the decreased fluorescence intensity of the MitoRed tracker dye at higher drug concentrations. In addition, high doses of ATDs caused cell damage through an increase in reactive oxygen species production in HepG2 cells and a simultaneous reduction in glutathione levels. Further, high dose of isoniazid (50–200 mM), pyrazinamide (50–200 mM), and rifampicin (20–100 µM) causes cell apoptosis and affects cell survival during toxic conditions by decreasing the expression of potent autophagy markers Atg5, Atg7, and LC3B. Thus, ATD-mediated toxicity contributes to the reduced ability of hepatocytes to tolerate cellular damage caused by altered mitochondrial membrane permeability, increased apoptosis, and decreased autophagy. These findings further emphasize the need to develop adjuvant therapies that can mitigate ATD-induced toxicity for the effective treatment of tuberculosis.  相似文献   
2.
Protein L is a multi domain cell wall constituent of certain strains of Peptostreptococcus magnus which binds to the variable domain of immunoglobulin κ-light chains. A single immunoglobulin-binding domain of Mr = 9000 from this protein has been isolated and crystallized. The crystals are of space group P42212, with cell dimensions a = b = 66.9 Å, c = 68.3 Å, and diffract to at least 2.2 Å resolution. The asymmetric unit of the crystal contains two molecules of the protein L domain, related by a noncrystallographic 2-fold axis, as revealed by a self-rotation function calculated with native diffraction data. © 1995 Wiley-Liss, Inc.  相似文献   
3.
Summary Culture conditions have been optimised to enable resting cell cultures ofAcinetobacter calcoaceticus NCIMB 9871 to selectively undertake either oxidative or reductive biotransformations of various bicyclic ketones.  相似文献   
4.
The 2.7 A crystal structure of the 55-kDa N-terminal breakage-reunion domain of topoisomerase (topo) IV subunit A (ParC) from Streptococcus pneumoniae, the first for the quinolone targets from a gram-positive bacterium, has been solved and reveals a 'closed' dimer similar in fold to Escherichia coli DNA gyrase subunit A (GyrA), but distinct from the 'open' gate structure of Escherichia coli ParC. Unlike GyrA whose DNA binding groove is largely positively charged, the DNA binding site of ParC exhibits a distinct pattern of alternating positively and negatively charged regions coincident with the predicted positions of the grooves and phosphate backbone of DNA. Based on the ParC structure, a new induced-fit model for sequence-specific recognition of the gate (G) segment by ParC has been proposed. These features may account for the unique DNA recognition and quinolone targeting properties of pneumococcal type II topoisomerases compared to their gram-negative counterparts.  相似文献   
5.
Southern leaf blight (SLB) caused by the fungus Cochliobolus heterostrophus (Drechs.) Drechs. is a major foliar disease of maize worldwide. Our objectives were to identify quantitative trait loci (QTL) for resistance to SLB and flowering traits in recombinant inbred line (RIL) population derived from the cross of inbred lines LM5 (resistant) and CM140 (susceptible). A set of 207 RILs were phenotyped for resistance to SLB at three time intervals for two consecutive years. Four putative QTL for SLB resistance were detected on chromosomes 3, 8 and 9 that accounted for 54% of the total phenotypic variation. Days to silking and anthesis–silking interval (ASI) QTL were located on chromosomes 6, 7 and 9. A comparison of the obtained results with the published SLB resistance QTL studies suggested that the detected bins 9.03/02 and 8.03/8.02 are the hot spots for SLB resistance whereas novel QTL were identified in bins 3.08 and 8.01/8.04. The linked markers are being utilized for marker‐assisted mobilization of QTL conferring resistance to SLB in elite maize backgrounds. Fine mapping of identified QTL will facilitate identification of candidate genes underlying SLB resistance.  相似文献   
6.
An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k?ε, standard k?ω, and k?ω Shear Stress Transport (SST)) and with one-equation Spalart–Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k?ω turbulence model resulted in the best agreement with the static pressure measurements, with an average error of ~20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.  相似文献   
7.
Current evidence suggests that a strong induced CD8 human immunodeficiency virus type 1 (HIV-1)-specific cell mediated immune response may be an important aspect of an HIV vaccine. The response rates and the magnitude of the CTL responses induced by current DNA vaccines in humans need to be improved and cellular immune responses to DNA vaccines can be enhanced in mice by co-delivering DNA plasmids expressing immune modulators. Two reported to work well in the mouse systems are interleukin (IL)-12 and CD40L. We sought to compare these molecular adjuvants in a primate model system. The cDNA for macaque IL-12 and CD40L were cloned into DNA vectors. Groups of cynomolgus macaques were immunized with 2 mg of plasmid expressing SIVgag alone or in combination with either IL-12 or CD40L. CD40L did not appear to enhance the cellular immune response to SIVgag antigen. However, more robust results were observed in animals co-injected with the IL-12 molecular adjuvant. The IL-12 expanded antigen-specific IFN-gamma positive effector cells as well as granzyme B production. The vaccine immune responses contained both a CD8 component as well a CD4 component. The adjuvanted DNA vaccines illustrate that IL-12 enhances a CD8 vaccine immune response, however, different cellular profiles.  相似文献   
8.
9.
DNA vaccination is an invaluable approach for immune therapy in that it lacks vector interference and thus permits repeated vaccination boosts. However, by themselves, DNA-based vaccines are typically poor inducers of Ag-specific immunity in humans and non-human primates. Cytokines, such as IL-12 and IL-15, have been shown to be potent adjuvants for the induction and maintenance of cellular immune responses, in particular during HIV infection. In this study, we examined the ability of therapeutic vaccination with SIV-DNA+IL-12 or IL-15 as molecular adjuvants to improve DNA vaccine potency and to enhance memory immune responses in SIV-infected macaques. Our results demonstrate that incorporating IL-12 into the vaccine induces SIV-specific CD8 effector memory T cell (T(EM)) functional responses and enhances the capacity of IFN-gamma-producing CD8 T(EM) cells to produce TNF. Lower levels of PD-1 were expressed on T cells acquiring dual function upon vaccination as compared with mono-functional CD8 T(EM) cells. Finally, a boost with SIV-DNA+IL-15 triggered most T cell memory subsets in macaques primed with either DNA-SIV or placebo but only CD8 T(EM) in macaques primed with SIV-DNA+IL-12. These results indicate that plasmid IL-12 and IL-15 cytokines represent a significant addition to enhance the ability of therapeutic DNA vaccines to induce better immunity.  相似文献   
10.
Cloud data centers often schedule heterogeneous workloads without considering energy consumption and carbon emission aspects. Tremendous amount of energy consumption leads to high operational costs and reduces return on investment and contributes towards carbon footprints to the environment. Therefore, there is need of energy-aware cloud based system which schedules computing resources automatically by considering energy consumption as an important parameter. In this paper, energy efficient autonomic cloud system [Self-Optimization of Cloud Computing Energy-efficient Resources (SOCCER)] is proposed for energy efficient scheduling of cloud resources in data centers. The proposed work considers energy as a Quality of Service (QoS) parameter and automatically optimizes the efficiency of cloud resources by reducing energy consumption. The performance of the proposed system has been evaluated in real cloud environment and the experimental results show that the proposed system performs better in terms of energy consumption of cloud resources and utilizes these resources optimally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号