首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有81条查询结果,搜索用时 375 毫秒
1.
Absorption spectra of large, well-formed crystals of cytosolic aspartate aminotransferase have been recorded using plane polarized light. Making use of measurements of crystal thickness we have calculated extinction coefficients with the electric vector of the light parallel to both the a and c axes of the crystals of the enzyme in space group P2(1)2(1)2(1). The spectra have been resolved into components with lognormal distribution curves and the resulting integrated intensities have been used to calculate the c/a polarization ratios for the absorption bands of the bound co-enzyme pyridoxal 5'-phosphate. From the polarization ratio and the co-ordinates of the co-enzyme ring atoms, provided by X-ray crystallography, we have assigned principal molecular directions of the transition dipole moment within the plane of the co-enzyme ring. Of two possible orientations, only one predicts the correct crystal extinction coefficients for the 436 nm band. In this orientation, when viewed from the B face of the ring (i.e. looking into the active site of the enzyme), the transition moment is related to the N-1-C-4 axis of the ring by counterclockwise rotation by 27 degrees. A tentative assignment of the principal molecular directions of the transition moment has also been made for the 368 nm band of the high pH form of the enzyme. In each case, the plane of the co-enzyme ring was located from the atomic co-ordinates of the ring atoms and of those atoms attached directly to the ring. The projection of the N-1 to C-4 axis on to this plane was used to evaluate the orientation of the transition moment, which was presumed to lie precisely within the plane of the ring. We have tilted this plane systematically to evaluate the error in transition moment direction resulting from uncertainties in the atomic co-ordinates. When 2-methylaspartate is diffused into the crystals if forms a Schiff base with the co-enzyme in which the ring has tilted about 32 degrees from its original position and the polarization ratio of the 436 nm band drops from 1.6 in the free enzyme to about 0.38. On the assumption that the orientation of the transition moment within the co-enzyme does not change during this rotation, this value of the polarization ratio is within experimental error of that predicted from X-ray structures on the two forms. The 2-methylaspartate binds only to subunit 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The mechanism of action of bovine pancreatic carboxypeptidase. Aalpha (peptidyl-L-amino acid hydrolase; EC 3.4.12.2) has been investigated by application of cryoenzymologic methods. Kinetic studies of the hydrolysis of the specific ester substrate O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate have been carried out with both the native and the Co2+-substituted enzyme in the 25 to --45 degrees C temperature range. In the --25 to --45 degrees C temperature range with enzyme in excess, a biphasic reaction is observed for substrate hydrolysis characterized by rate constants for the fast (kf) and the slow (ks) processes. In Arrhenius plots, ks extrapolates to kcat at 25 degrees C for both enzymes in aqueous solution, indicating that the same catalytic rate-limiting step is observed. The slow process is analyzed for both metal enzymes, as previously reported (Makinen, M. W., Yamamura, K., and Kaiser, E. T. (1976) Proc Natl. Acad. Sci. U. S. A. 73, 3882-3886), to involve the deacylation of a mixed anhydride acyl-enzyme intermediate. Near --60 degrees C the acyl-enzyme intermediate of both metal enzymes can be stabilized for spectral characterization. The pH and temperature dependence of ks reveals a catalytic ionizing group with a metal ion-dependent shift in pKa and an enthalpy of ionization of 7.2 kcal/mol for the native enzyme and 6.2 kcal/mol for the Co2+ enzyme. These parameters identify the ionizing catalytic group as the metal-bound water molecule. Extrapolation of the pKa data to 25 degrees C indicates that this ionization coincides with that observed in the acidic limb of the pH profile of log(kcat/Km(app)) for substrate hydrolysis under steady state conditions. The results indicate that in the esterolytic reaction of carboxypeptidase. A deacylation of the mixed anhydride intermediate is catalyzed by a metal-bound hydroxide group.  相似文献   
3.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   
4.
The influence of divalent metal ions on the intrinsic and kirromycin-stimulated GTPase activity in the absence of programmed ribosomes and on nucleotide binding affinity of elongation factor Tu (EF-Tu) from Thermus thermophilus prepared as the nucleotide- and Mg(2+)-free protein has been investigated. The intrinsic GTPase activity under single turnover conditions varied according to the series: Mn(2+) (0.069 min(-1)) > Mg(2+) (0.037 min(-1)) approximately no Me(2+) (0.034 min(-1)) > VO(2+) (0.014 min(-1)). The kirromycin-stimulated activity showed a parallel variation. Under multiple turnover conditions (GTP/EF-Tu ratio of 10:1), Mg(2+) retarded the rate of hydrolysis in comparison to that in the absence of divalent metal ions, an effect ascribed to kinetics of nucleotide exchange. In the absence of added divalent metal ions, GDP and GTP were bound with equal affinity (K(d) approximately 10(-7) m). In the presence of added divalent metal ions, GDP affinity increased by up to two orders of magnitude according to the series: no Me(2+) < VO(2+) < Mn(2+) approximately Mg(2+) whereas the binding affinity of GTP increased by one order of magnitude: no Me(2+) < Mg(2+) < VO(2+) < Mn(2+). Estimates of equilibrium (dissociation) binding constants for GDP and GTP by EF-Tu on the basis of Scatchard plot analysis, together with thermodynamic data for hydrolysis of triphosphate nucleotides (Phillips, R. C., George, P., and Rutman, R. J. (1969) J. Biol. Chem. 244, 3330-3342), showed that divalent metal ions stabilize the EF-Tu.Me(2+).GDP complex over the protein-free Me(2+).GDP complex in solution, with the effect greatest in the presence of Mg(2+) by approximately 10 kJ/mol. These combined results show that Mg(2+) is not a catalytically obligatory cofactor in intrinsic and kirromycin-stimulated GTPase action of EF-Tu in the absence of programmed ribosomes, which highlights the differential role of Mg(2+) in EF-Tu function.  相似文献   
5.
6.
Better understanding of tolerance and autoimmunity toward melanocyte-specific Ags is needed to develop effective treatment for vitiligo and malignant melanoma; yet, a systematic assessment of these mechanisms has been hampered by the difficulty in tracking autoreactive T cells. To address this issue, we have generated transgenic mice that express hen egg lysozyme as a melanocyte-specific neoantigen. By crossing these animals to a hen egg lysozyme-specific CD4 TCR transgenic line we have been able to track autoreactive CD4+ T cells from their development in the thymus to their involvement in spontaneous autoimmune disease with striking similarity to human vitiligo vulgaris and Vogt-Koyanagi-Harada syndrome. Our findings show that CD4-dependent destruction of melanocytes is partially inhibited by blocking Fas-Fas ligand interactions and also highlights the importance of local control of autoimmunity, as vitiligo remains patchy and never proceeds to confluence even when Ag and autoreactive CD4+ T cells are abundant. Immune therapy to enhance or suppress melanocyte-specific T cells can be directed at a series of semiredundant pathways involving tolerance and cell death.  相似文献   
7.
Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels--smooth muscle and endothelial cells--and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function.  相似文献   
8.
The hydrogen-abstracting quinone derivative 3,4,5,6-tetrachloro-1,2-benzoquinone (o-chloranil) caused a strong, near stoichiometric, irreversible inactivation of the collagenases from Bacillus cereus, Clostridium histolyticum and Achromobacter iophagus. p-Chloranil was a weaker inactivator. o-Chloranil reacted rapidly with a site that affected substrate binding. Amino acid analyses of native and totally inactivated enzymes, and the pH-profile of inactivation suggest that the dissociated form of a tyrosine residue was modified.  相似文献   
9.
The major collagenolytic proteinase present in the culture filtrate of Bacillus cereus (strain Soc 67, isolated from the human oral cavity) has been purified to homogeneity by a procedure that comprised concentration of ultrafiltered growth medium on a Millipore PTTK00005 membrane, precipitation with ammonium sulfate, gel permeation chromatography, chromatofocusing, fast protein liquid chromatography on an anion-exchange column, and finally fast protein liquid chromatography on a gel column. The enzyme hydrolyzed, with decreasing rates, phenylazobenzyloxy-carbonyl-L-Pro-L-Leu Gly-L-Pro-D-Arg (PZ-PLGPA), furylacrylolyl-L-Leu-Gly-L-Pro-L-Ala, and furylacryloyl-L-Phe-Gly-Gly, while furylacryloyl-Gly-L-Leu-NH2 was not hydrolyzed. The enzyme degraded soluble and insoluble collagens, Azocoll and gelatin. Bradykinin was hydrolyzed at a high rate at the Phe-Ser bond. The enzyme was sensitive to pyrophosphate, L-cysteine, and L-histidine and could be totally inactivated in the presence of metal chelators. The enzyme contains 1 mol of Zn/mol and the hydrolysis of PZ-PLGPA is slightly increased by Ca2+. The enzyme is readily inhibited by heavy metal cations, but Cu2+ and Ni2+ affected the catalysis in opposite ways: increasing levels of Cu2+ decreased the affinity of the enzyme for PZ-PLGPA, whereas Ni2+ had no effect. The effect of Cu2+ also depended on the pH and type of buffer used. Detailed chemical modification experiments suggested that the active site of the enzyme contains at least 1 tyrosyl and 1 lysyl residue, and 1 carboxyl group. The enzyme was not sensitive to sulfhydryl reagents and thiols did not activate the enzyme. The modification studies were unable to reveal active histidyl residues. The ability of the enzyme to hydrolyze PZ-PLGPA, furylacryloyl-L-Leu-Gly-L-Pro-L-Ala, furylacryloyl-L-Phe-Gly-Gly, and various collagenous materials, its inactivity toward furylacryloyl-Gly-L-Leu-NH2, and the results from the chemical modification studies suggest that the B. cereus (Soc 67) collagenolytic enzyme can be regarded as a true collagenase which resembles the Clostridium histolyticum collagenase(s).  相似文献   
10.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号