首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   13篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   11篇
  2017年   2篇
  2016年   5篇
  2015年   12篇
  2014年   13篇
  2013年   12篇
  2012年   24篇
  2011年   25篇
  2010年   26篇
  2009年   16篇
  2008年   18篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   12篇
  2003年   19篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有294条查询结果,搜索用时 93 毫秒
1.
Core temperature was determined in two king penguins living in the wild at Ile de la Possession, Crozel Archipelago, using implantable four-channel temperature loggers. Core temperatures derived from bird no. 1 (sensor placed under the sternum, in the vicinity of the liver and upper stomach) were closely correlated with diving activity (as determined by an external light recorder), and ranged from 38.3°C, (on land) to a minimum of 37.2°C during a dive. Core temperatures measured in bird no. 2 showed that temperatures near the heart were generally 1°C lower than those under the sternum or in the lower abdomen. Core temperatures declined continuously during dives (by 0.8, 1.2 and 2.7°C in the lower abdomen, under the sternum and near the heart, respectively) and showed precipitous drops to 35°C, probably associated with ingestion of food. Temperatures measured near the heart fluctuated over a period of 288 s, corresponding to the duration (from the literature) of the surface/dive cycle. The relevance of these findings with respect to diving physiology, blood perfusion of tissues, tissue metabolism and aerobic dive limits is discussed.  相似文献   
2.
The oligosaccharide structures ofCry j I, a major allergenic glycoprotein ofCryptomeria japonica (Japanese cedar, sugi), were analysed by 400 MHz1H-NMR and two-dimensional sugar mapping analyses. The four major fractions comprised a series of biantennary complex type N-linked oligosaccharides that share a fucose/xylose-containing core and glucosamine branches including a novel structure with a nongalactosylated fucosylglucosamine branch.Rabbit polyclonal anti-Cry j I IgG antibodies cross-reacted with three different plant glycoproteins having the same or shorter N-linked oligosaccharides asCry j I. ELISA and ELISA inhibition studies with intact glycoproteins, glycopeptides and peptides indicated that both anti-Cry j I IgGs and anti-Sophora japonica bark lectin II (B-SJA-II) IgGs included oligosaccharide-specific antibodies with different specificities, and that the epitopic structures against anti-Cry j I IgGs include a branch containing 1–6 linked fucose and a core containing fucose/xylose, while those against anti-B-SJA-II IgGs include nonreducing terminal mannose residues. The cross-reactivities of human allergic sera to miraculin andClerodendron Trichotomum lectin (CTA) were low, and inhibition studies suggested that the oligosaccharides onCry j I contribute little or only conformationally to the reactivity of specific IgE antibodies.Abbreviations Cry j I a major allergenic glycoprotein ofCryptomeria japonica - B-SJA-II Sophora japonica bark lectin II - CTA Clerodendron trichotomum lectin - TFMS trifluoromethanesulfonic acid - HRP horseradish peroxidase  相似文献   
3.
Summary Body protein sparing during starvation has been examined in fat and lean Svalbard ptarmigan. Protein utilization was determined from daily N excretion and from the rate of decrease in body mass. Changes in plasma concentrations of -hydroxybutyrate, free fatty acids, glucose, and uric acid were also recorded. When fat birds were starved for 15 days protein catabolism initially fell (phase I) and was thereafter kept low (phase II). This was evident from the temporal pattern in both N excretion and body mass loss. In two birds, N excretion eventually increased, revealing enhanced protein catabolism and thus a third phase of starvation. Changes in protein utilization were paralleled by changes in plasma uric acid. Approximately 9% of the energy demand was covered by breakdown of body protein during phase II. The importance of fat catabolism in providing energy was indicated by markedly elevated plasma levels of -hydroxybutyrate and free fatty acids. When lean birds were starved for 5 days there appeared to be no phase II. The temporal pattern of body mass loss indicated phase I and III but that of N excretion only phase III. The relative contribution of body protein to energy demand increased from 22% at day 2 to 41% at the end of starvation and was paralleled by increased plasma uric acid. When data from lean and fat birds were pooled, the changes in uric acid and N excretion were highly correlated (r=0.92, P<0.001), indicating that plasma uric acid is a reliable index of protein breakdown in starving Svalbard ptarmigan. In conclusion, starving fat Svalbard ptarmigan have a much greater capacity to spare body protein than lean birds. Fat birds effectively reduce protein catabolism and maintain this at a low level whereas starving lean birds increase protein catabolism.Abbreviations -OHB -hydroxybutyrate - BM body mass - BMR basal metabolic rate; dne daily nitrogen excretion - FFA free fatty acids - MR metabolic rate  相似文献   
4.
5.
Diacylglycerol kinase (DGK) η translocates from the cytoplasm to punctate vehicles via osmotic shock. Apoptosis signal-regulating kinase (ASK) 3 (MAP kinase kinase kinase (MAPKKK) 15) is also reported to respond to osmotic shock. Therefore, in the present study, we examined the subcellular localization of DGKη and ASK3 expressed in COS-7 cells under osmotic stress. We found that DGKη was almost completely colocalized with ASK3 in punctate structures in response to osmotic shock. In contrast, DGKδ, which is closely related to DGKη structurally, was not colocalized with ASK3, and DGKη failed to colocalize with another MAPKKK, C-Raf, even under osmotic stress. The structures in which DGKη and ASK3 localized were not stained with stress granule makers. Notably, DGKη strongly interacted with ASK3 in an osmotic shock-dependent manner. These results indicate that DGKη and ASK3 undergo osmotic shock-dependent colocalization and associate with each other in specialized structures.  相似文献   
6.
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.  相似文献   
7.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   
8.
Journal of Plant Research - Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to...  相似文献   
9.
Oral administration of epsilon-polylysine to rats reduced the peak plasma triacylglycerol concentration. In vitro, epsilon-polylysine and polylysine strongly inhibited the hydrolysis, by either pancreatic lipase or carboxylester lipase, of trioleoylglycerol (TO) emulsified with phosphatidylcholine (PC) and taurocholate. The epsilon-polylysine concentration required for complete inhibition of pancreatic lipase, 10 microg/ml, is 1,000 times lower than that of BSA required for the same effect. Inhibition requires the presence of bile salt and, unlike inhibition of lipase by other proteins, is not reversed by supramicellar concentrations of bile salt. Inhibition increases with the degree of polylysine polymerization, is independent of lipase concentration, is independent of pH between 5.0 and 9.5, and is accompanied by an inhibition of lipase binding to TO-PC emulsion particles. However, epsilon-polylysine did not inhibit the hydrolysis by pancreatic lipase of TO emulsions prepared using anionic surfactants, TO hydrolysis catalyzed by lingual lipase, or the hydrolysis of a water-soluble substrate. In the presence of taurocholate, epsilon-polylysine becomes surface active and adsorbs to TO-PC monomolecular films. These results are consistent with epsilon-polylysine and taurocholate forming a surface-active complex that binds to emulsion particles, thereby retarding lipase adsorption and triacylglycerol hydrolysis both in vivo and in vitro.  相似文献   
10.
Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showed a high dioxygenase activity only for 1,2,4-trihydroxybenzene, with K(m) and V(max) values of 9.6 micro M and 6.8 micro mol min(-1) mg of protein(-1), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号