首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   9篇
  2011年   1篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1967年   1篇
排序方式: 共有78条查询结果,搜索用时 93 毫秒
1.
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characterize the FAE1 KCS and analyze its mechanism, FAE1 KCS and its mutants were engineered with a His6-tag at their N-terminus, and expressed in Saccharomyces cerevisiae. The membrane-bound enzyme was then solubilized and purified to near homogeneity on a metal affinity column. Wild-type recombinant FAE1 KCS was active with several acyl-CoA substrates, with highest activity towards saturated and monounsaturated C16 and C18. In the absence of an acyl-CoA substrate, FAE1 KCS was unable to carry out decarboxylation of [3-(14)C]malonyl-CoA, indicating that it requires binding of the acyl-CoA for decarboxylation activity. Site-directed mutagenesis was carried out on the FAE1 KCS to assess if this condensing enzyme was mechanistically related to the well characterized soluble condensing enzymes of fatty acid and flavonoid syntheses. A C223A mutant enzyme lacking the acylation site was unable to carry out decarboxylation of malonyl-CoA even when 18:1-CoA was present. Mutational analyses of the conserved Asn424 and His391 residues indicated the importance of these residues for FAE1-KCS activity. The results presented here provide the initial analysis of the reaction mechanism for a membrane-bound condensing enzyme from any source and provide evidence for a mechanism similar to the soluble condensing enzymes.  相似文献   
2.
A monoclonal antibody (MoAb 11-4) was raised against K562, a human erythroleukemia cell line sensitive to natural killer cell-mediated cytotoxicity (NK-CMC). Immunological analysis revealed MoAb to be IgG2b. Alone, the MoAb was not cytotoxic for K562 and did not bind to the effector cells, but the addition of this antibody to macrophage-depleted human peripheral blood lymphocytes increased killing of K562 in a 4-hr NK-CMC assay. The maximum increase in NK-CMC was observed when MoAb 11-4 was added to target cells prior to the formation of effector/target cell conjugates. This effect was dose dependent, was specific for K562, and, contrary to conventional antisera, occurred at very low concentrations of MoAb. When MoAb was added either to Percoll-purified large granular lymphocytes (LGL) or to LGL-depleted lymphocytes, only the latter demonstrated a significant increase in the killing of K562 in a 4-hr chromium release assay. Kinetics studies revealed that although the overall LGL-mediated lysis was only slightly increased at 4 hr, the maximum lytic activity was reached within 2 hr. These studies suggest that (1) human LGL and LGL-depleted cell populations bear Fc receptors for mouse IgG2b and (2) although the cytotoxic activities of both cell populations are increased by treatment with MoAb 11-4, the kinetics of this increase are different.  相似文献   
3.
The activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, is differentially distributed in various regions of the rat brain. The cerebellum possessed the highest enzyme activity of the eight regions studied. The cerebral cortex and the midbrain also exhibited high 5-aminolaevulinate synthase activity; the septum, hypothalamus, thalamus, amygdala and the hippocampus possessed much lower enzyme activity. However, the total porphyrin and haem contents of the different brain segments did not vary greatly. Mn2+, when administered subcutaneously to rats, effectively inhibited the activity of 5-aminolaevulinate synthase in the cerebellum, midbrain and cerebral cortex; however, repeated injections of the metal ion neither decreased the haem and porphyrin contents of the brain nor induced haem oxygenase activity. Mn2+ was not an effective inhibitor of 5-aminolaevulinate synthase activity in vitro. On the other hand, studies carried out with the liver in vivo suggested that Mn2+ may alter the turnover rate of cellular haem and haemoproteins. In that event, it is likely that the inhibition of 5-aminolaevulinate synthase by Mn2+ was in part a result of the inhibition of protein synthesis by the metal ion. It is postulated that the haem and porphyrin contents of the brain are maintained at a steady-state level, due in part to the refractoriness to inducers of the regulatory mechanism for haem catabolic enzymes and in part to the ability of the organ to utilize haem precursors derived from extraneuronal sources.  相似文献   
4.
In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride–sulfate system.  相似文献   
5.
Human biliverdin reductase (hBVR), a dual specificity kinase (Ser/Thr/Tyr) is, as protein kinase C (PKC) betaII, activated by insulin and free radicals (Miralem, T., Hu, Z., Torno, M. D., Lelli, K. M., and Maines, M. D. (2005) J. Biol. Chem. 280, 17084-17092; Lerner-Marmarosh, N., Shen, J., Torno, M. D., Kravets, A., Hu, Z., and Maines, M. D. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7109-7114). Here, by using 293A cells co-transfected with pcDNA3-hBVR and PKC betaII plasmids, we report the co-immunoprecipitation of the proteins and co-purification in the glutathione S-transferase (GST) pulldown assay. hBVR and PKC betaII, but not the reductase and PKC zeta, transphosphorylated in assay systems supportive of activity of only one of the kinases. PKC betaII K371R mutant protein ("kinase-dead") was also a substrate for hBVR. The reductase increased the Vmax but not the apparent Km values of PKC betaII for myelin basic protein; activation was independent of phospholipids and extended to the phosphorylation of S2, a PKC-specific substrate. The increase in substrate phosphorylation was blocked by specific inhibitors of conventional PKCs and attenuated by sihBVR. The effect of the latter could be rescued by subsequent overexpression of hBVR. To a large extent, the activation was a function of the hBVR N-terminal chain of valines and intact ATP-binding site and the cysteine-rich C-terminal segment. The cobalt protoporphyrin-activated hBVR phosphorylated a threonine in a peptide corresponding to the Thr500 in the human PKC betaII activation loop. Neither serine nor threonine residues in peptides corresponding to other phosphorylation sites of the PKC betaII nor PKC zeta activation loop-derived peptides were substrates. The phosphorylation of Thr500 was confirmed by immunoblotting of hBVR.PKC betaII immunocomplex. The potential biological relevance of the hBVR activation of PKC betaII was suggested by the finding that in cells transfected with the PKC betaII, hBVR augmented phorbol myristate acetate-mediated c-fos expression, and infection with sihBVR attenuated the response. Also, in cells overexpressing hBVR and PKC betaII, as well as in untransfected cells, upon treatment with phorbol myristate acetate, the PKC translocated to the plasma membrane and co-localized with hBVR. hBVR activation of PKC betaII underscores its potential function in propagation of signals relayed through PKCs.  相似文献   
6.
7.
8.
9.
Bone marrow microenvironment(BMM) is the main sanctuary of leukemic stem cells(LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease.Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号