首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   12篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   13篇
  2007年   15篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有148条查询结果,搜索用时 203 毫秒
1.
Summary A mixed culture of Endomycopsis fibuligera NRRL 76 and Zymomonas mobilis ZM4 could directly and more efficiently ferment cassava starch (22.5% w/v) to ethanol (10.5% v/v) than the monocultures. The combination of culture filtrate of E.fibuligera containing amylases and Z.mobilis simultaneously saccharified and fermented the cassava starch to ethanol equally well. Glucoamylase (0.01%) added to the fermenting medium improved ethanol (13.2% v/v) production by the above mixed culture to almost the theoretical level (98%) indicating that this enzyme is a rate-limiting factor in E.fibuligera. Z. mobilis alone converted the enzymehydrolyzed starch only to almost theoretical level (98%).  相似文献   
2.
Protoplasts were isolated from the basal meristematic region of leaves from 6-day-old seedlings of wheat (Triticum aestivum). Protoplasts divided when cultured on MS medium (as agarose beads) in presence of nurse tissue. Donor seedlings when grown on BAP-supplemented MS medium were found to be considerably superior for protoplast isolation and culture than when grown on MS basal medium, in terms of protoplast viability, cell wall formation and cell division frequency. In addition, reduction of ammonium content of the culture medium, together with a dark Incubation, led to a high protoplast division frequency of about 70%. Microcolonies of 10-to 12-celled stages were obtained in Triticum aestivum, varieties HD 2329, HD 2285, Kalyan Sona, Arjun and CPAN 1676.  相似文献   
3.
Cell and Tissue Biology - Besides disease condition, very few stress stimulants were determined to provoke red blood cell (RBC) adhesion to endothelial cells (EC). However, the possible role of...  相似文献   
4.
Probiotics and Antimicrobial Proteins - In this study, a bacterial strain COFCAU_P1, isolated from the digestive tract of a freshwater teleost rohu (Labeo rohita), was identified as Bacillus...  相似文献   
5.
Mitochondrial research is presently one of the fastest growing disciplines in biomedicine. Since the early 1990s, it has become increasingly evident that mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Most remarkably, mitochondria, the “power house” of the cell, have also become accepted as the “motor of cell death” reflecting their recognized key role during apoptosis. Based on these recent exciting developments in mitochondrial research, increasing pharmacological efforts have been made leading to the emergence of “Mitochondrial Medicine” as a whole new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, colloidal vectors, i.e., delivery systems, need to be developed able to selectively transport biologically active molecules to and into mitochondria within living human cells. Here we review ongoing efforts in our laboratory directed toward the development of different phospholipid- and non-phospholipid-based mitochondriotropic drug carrier systems.  相似文献   
6.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
7.
8.
A ribonuclease from cobra snake venom was isolated and purified to homogeneity using antibody-affinity chromatography, increasing the yield fourfold. The purified enzyme showed cytidylic acid specificity, as reported earlier. Further, the effects of temperature, pH, metal ions, inhibitors, and urea on the enzyme activity were studied. Snake venom RNase exhibited salt-dependent reversible association-dissociation behaviour. Immunological studies indicate that this enzyme shares one of the antigenic sites of RNase A. The partial N-terminal sequence of the enzyme showed considerable homology with phospholipases from snake venom; however, the enzyme itself did not show any phospholipase activity.  相似文献   
9.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   
10.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号