首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   19篇
  国内免费   9篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   14篇
  2014年   12篇
  2013年   15篇
  2012年   8篇
  2011年   13篇
  2010年   10篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   10篇
  1999年   5篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1977年   4篇
  1975年   1篇
  1973年   2篇
  1958年   1篇
  1955年   1篇
  1954年   2篇
  1953年   1篇
  1951年   2篇
  1899年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
1.
The oxygenated-metabolite profiles of exogenous 17 beta-oestradiol (E2) in adult male and female Wistar rats have been characterized and major sex-dependent biotransformations observed which correlate with the regioselectivities of known sexually differentiated hepatic P450. [6,7-3H]E2 (27 micrograms/kg) was given i.v. The metabolites of E2 were rapidly and extensively excreted in bile (46 and 78% of the dose over 1 and 6 h, respectively). Female rats metabolized E2 by one major pathway: oxidation to oestrone (E1) followed by C-2 hydroxylation and O-methylation; the principal aglycones (0-1 h bile collections) were E1 (14%), 2-hydroxyE1 (2-OHE1) (42%) and 2-methoxyE1 (24%). Male rats metabolized E2 principally by two parallel composite pathways of E1 hydroxylation which yielded a complex mixture of mono- and di-oxygenated compounds: 15 alpha-OHE1 (33%), 2,15 alpha-diOHE1 (7%), and 2-methoxy-15 alpha OHE1 (14%); 16 alpha-OHE1 (13%), 2,16 alpha-diOHE1 (4%) and 2-methoxy-16 alpha-OHE1 (2%). 15 alpha-Hydroxylation was unique to males. The balance of aromatic and alkyl hydroxylation in males was dose-dependent: at 3 mg/kg, 15 alpha-hydroxylation was decreased approx. 50% in favour of 2-hydroxylation whilst 16 alpha-hydroxylation was largely unaffected. The male-specific 15 alpha-hydroxylation and male-predominant 16 alpha-hydroxylation of E1 derived from E2 in vivo may be ascribable to the male-specific isoforms P450IIC13 and P450IIC11, respectively.  相似文献   
2.
3.
The metabolism of [6,7-3H]ethinylestradiol [( 3H]EE2) by rat liver microsomes was studied in vitro. After incubation of [3H]EE2 with rat liver microsomes for 20 min, 90% of the substrate was metabolised and 18% of the 3H-labelled material irreversibly bound to microsomal protein. Ascorbic acid (1 mM) decreased irreversible binding of 3H and produced an accumulation of 2-hydroxyethinylestradiol (2OH-EE2), while mixed-function oxidase inhibitors (0.5 mM) decreased binding of 3H to protein by inhibiting EE2 2-hydroxylation. Addition of thiols gave water-soluble metabolites which were characterised as 1(4)-thioether derivatives of 2OH-EE2 by co-chromatography with synthetic products. The results are consistent with the hypothesis that the chemically reactive metabolite of EE2 formed in vitro is either a quinone or o-semiquinone derived from 2OH-EE2 [1].  相似文献   
4.
Brief digestion of ox neurofilaments with trypsin liberates fragments that are soluble and have molecular weights ranging from 164 000 to 97 000. Peptide fingerprinting indicates that these regions, termed the tryptic head-regions, arise from the 205 000- and 158 000-mol.wt. components of the triplet. The remains of the parent polypeptides sediment with normal filaments and have been termed tail-regions. Digestion of neurofilaments with chymotrypsin also liberates soluble fragments (chymotryptic head-regions) but these have mol.wts. 171 000 and 119 000, though they too originate from the higher-molecular-weight triplet polypeptides. Tryptic and chymotryptic head-regions have extensive homology, and a low (less than or equal to 20%) helix content. Electron microscopy shows that chymotryptic digestion rapidly reduces the length of filaments, probably because this enzyme preferentially attacks the 72 000-mol.wt. polypeptide. In contrast, brief digestion with trypsin does not reduce filament length even though more than 90% of the two higher-molecular-weight components have been cleaved. These results indicate that the backbone of native filaments is formed from the 72 000-mol.wt. polypeptide together with the tail-regions from the 205 000- and 158 000-mol.wt. polypeptides. The corresponding head-regions of these components, which can represent nearly 75% of each molecule, are not necessary for preserving the backbone of native neurofilaments and are therefore good candidates for being the side arms that connect these filaments in nerve cells.  相似文献   
5.
A Pikea species attributed to Pikea californica Harvey has been established in England since at least 1967. Previously, this species was believed to occur only in Japan and Pacific North America. Comparative morphological studies on field-collected material and cultured isolates from England, California, and Japan and analysis of organellar DNA restriction fragment length polymorphisms, detected using labeled organellar DNA as a non-radioactive probe, showed that English Pikea is conspecific with P. californica from California. Both populations consist of dioecious gametophytes with heteromorphic life histories involving crustose tetrasporophytes; 96% of organellar DNA bands were shared between interoceanic samples. A second dioecious species of Pikea, P. pinnata Setchell in Collins, Holden et Setchell, grows sympatrically with P. californica near San Francisco but can be distinguished by softer texture, more regular branching pattern, and elongate cystocarpic axes. Pikea pinnata and P. californica samples shared 49–50% of organellar DNA bands, consistent with their being distinct species. Herbarium specimens of P. robusta Abbott resemble P. pinnata in some morphological features but axes are much wider; P. robusta may represent a further, strictly sub-tidal species but fertile material is unknown. Pikea thalli from Japan, previously attributed to P. californica and described here as Pikea yoshizakii sp. nov., are monoecious and show a strikingly different type of life history. After fertilization, gonimoblast filaments grow outward through the cortex and form tetrasporangial nemathecia; released tetraspores develop directly into erect thalli. Tetrasporoblastic life histories are characteristic of certain members of the Phyllophoraceae but were previously unknown in the Dumontiaceae. Japanese P. yoshizakii shared 55 and 56% of organellar DNA bands with P. californica and P. pinnata, respectively; phylogenetic analysis indicated equally distant relationships to both species. Pikea yoshizakii or a closely similar species with the same life history occurs in southern California and Mexico.  相似文献   
6.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
7.
The Gymnogongrus devoniensis (Greville) Schotter complex in the North Atlantic Ocean was elucidated by comparative molecular, morphological, and culture studies. Restriction fragment length patterns and hybridization data on organellar DNA revealed two distinct taxa in samples from Europe and eastern Canada. Nucleotide sequences for the intergenic spacer between the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and the adjoining regions of both genes, differed by 12.5–13.4% between the two taxa. One of the taxa, which included material from the type locality of G. devoniensis at Torbay, Devon, England, was taken to represent authentic G. devoniensis. Within this taxon, samples from Ireland, England, northern France, northern Spain, and southern Portugal showed great morphological variation, particularly in habit, but their Rubisco spacer sequences were identical or differed by only a single nucleotide. Constant morphological features included the development, from a single auxiliary cell, of the spherical cystocarp with a thick mucilage sheath that appears to be typical of Gymnogongrus species with internal cystocarps. Two life-history types were found. Northern isolates underwent a direct-type life history, recycling apomictic females by carpospores, whereas the Portuguese isolate followed a heteromorphic life history in which carpospores gave rise to a crustose tetrasporophyte. The second group of samples, from Nova Scotia and Northern Ireland, provisionally referred to as Gymnogongrus sp., showed little morphological variation. The life history in both areas consists of apomictically reproducing diploid female gametophytes and diploid crustose bisporophytes and tetrasporophytes. Rubisco spacer sequences of the samples were identical, and the plasmid previously described in the Nova Scotian samples was also present in the Northern Ireland population. This species is widely distributed in the western Atlantic, from Newfoundland to Massachusetts. In Europe, gametophytes are known only at one site, but crusts are distributed from Denmark, Scotland (and probably Norway) to France. It is very likely that this species was introduced from one side of the North Atlantic to the other by shipping during the early nineteenth century. Several morphological features are unusual within the genus but are shared with G. leptophyllus J. Agardh from the eastern Pacific Ocean, and further work is necessary to determine whether Gymnogongrus sp. and G. leptophyllus are conspecific.  相似文献   
8.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
9.
10.
1. When axoplasm is incubated with [32P]Pi the main phosphorylated components are the neurofilament polypeptides. 2. Activation with Ca2+ of the proteinase present in axoplasm causes degradation of these neurofilaments and the peptides produced by this reaction have been analysed by fingerprinting. 3. Fingerprinting shows that initially the Ca2+-activated proteinase cleaves the neurofilament polypeptides at three major sites producing polypeptides with mol.wts. 70,000, 50,000 and 47,000. 4. These polypeptides sediment with filaments, originate from the tail-region of the molecule and contain a little radioactive label. 5. As these polypeptides are produced, other polypeptides that come from the head-region of the molecule are liberated as soluble products that contain the bulk of the radioactivity. 6. Fingerprinting therefore shows that at least two regions on the molecule are phosphorylated and that the major one is located towards the head-end of the polypeptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号