首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  2021年   4篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  1997年   1篇
  1975年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
Several epidemiological studies have suggested a link between melanoma and breast cancer. Metabotropic glutamate receptor 1 (GRM1), which is involved in many cellular processes including proliferation and differentiation, has been implicated in melanomagenesis, with ectopic expression of GRM1 causing malignant transformation of melanocytes. This study was undertaken to evaluate GRM1 expression and polymorphic variants in GRM1 for associations with breast cancer phenotypes. Three single nucleotide polymorphisms (SNPs) in GRM1 were evaluated for associations with breast cancer clinicopathologic variables. GRM1 expression was evaluated in human normal and cancerous breast tissue and for in vitro response to hormonal manipulation. Genotyping was performed on genomic DNA from over 1,000 breast cancer patients. Rs6923492 and rs362962 genotypes associated with age at diagnosis that was highly dependent upon the breast cancer molecular phenotype. The rs362962 TT genotype also associated with risk of estrogen receptor or progesterone receptor positive breast cancer. In vitro analysis showed increased GRM1 expression in breast cancer cells treated with estrogen or the combination of estrogen and progesterone, but reduced GRM1 expression with tamoxifen treatment. Evaluation of GRM1 expression in human breast tumor specimens demonstrated significant correlations between GRM1 staining with tissue type and molecular features. Furthermore, analysis of gene expression data from primary breast tumors showed that high GRM1 expression correlated with a shorter distant metastasis-free survival as compared to low GRM1 expression in tamoxifen-treated patients. Additionally, induced knockdown of GRM1 in an estrogen receptor positive breast cancer cell line correlated with reduced cell proliferation. Taken together, these findings suggest a functional role for GRM1 in breast cancer.  相似文献   
3.
A 6-chloronicotinic acid mineralizing bacterium was isolated from enrichment cultures originating from imidacloprid-contaminated soil samples. This Bradyrhizobiaceae, designated strain SG-6C, hydrolytically dechlorinated 6-chloronicotinic acid to 6-hydroxynicotinic acid, which was then further metabolised via the nicotinic acid pathway. This metabolic pathway was confirmed by growth and resting cell assays using HPLC and LC-MS studies. A candidate for the gene encoding the initial dechlorination step, named cch2 (for 6-chloronicotinic acid chlorohydrolase), was identified using genome sequencing and its function was confirmed using resting cell assays on E. coli heterologously expressing this gene. The 464 amino acid enzyme was found to be a member of the metal dependent hydrolase superfamily with similarities to the TRZ/ATZ family of chlorohydrolases. We also provide evidence that cch2 was mobilized into this bacterium by an Integrative and Conjugative Element (ICE) that feeds 6-hydroxynicotinic acid into the existing nicotinic acid mineralization pathway.  相似文献   
4.
Beta-sitosterol (β-SITO), a phytosterol present in many edible vegetables, has been reported to possess antineoplastic properties and cancer treatment potential. We have shown previously that it binds at a unique site (the ‘SITO-site’) compared to the colchicine binding site at the interface of α- and β-tubulin. In this study, we investigated the anticancer efficacy of β-SITO against invasive breast carcinoma using MCF-7 cells. Since ‘isotypes’ of β-tubulin show tissue-specific expression and many are associated with cancer drug resistance, using computer-assisted docking and atomistic molecular dynamic simulations, we also examined its binding interactions to all known isotypes of β-tubulin in αβ-tubulin dimer. β-SITO inhibited MCF-7 cell viability by up to 50%, compared to vehicle-treated control cells. Indicating its antimetastatic potential, the phytosterol strongly inhibited cell migration. Immunofluorescence imaging of β-SITO-treated MCF-7 cells exhibited disruption of the microtubules and chromosome organization. Far-UV circular dichroism spectra indicated loss of helical stability in tubulin when bound to β-SITO. Docking and MD simulation studies, combined with MM-PBSA and MM-GBSA calculations revealed that β-SITO preferentially binds with specific β-tubulin isotypes (βII and βIII) in the αβ-tubulin dimer. Both these β-tubulin isotypes have been implicated in drug resistance against tubulin-targeted chemotherapeutics. Our data show the tubulin-targeted anticancer potential of β-SITO, and its potential clinical utility against βII and βIII isotype-overexpressing neoplasms.  相似文献   
5.
The genes encoding aminoglycoside resistance in Enterococcus faecalis may promote collateral aminoglycoside resistance in polymicrobial wounds. We studied a total of 100 diabetic foot ulcer samples for infection and found 60 samples to be polymicrobial, 5 to be monomicrobial, and 35 samples to be culture negative. A total of 65 E. faecalis isolates were screened for six genes coding for aminoglycoside resistance, antibiotic resistance patterns, and biofilm production. Infectious Diseases Society of America/International Working Group on the Diabetic Foot system was used to classify the wound ulcers. Majority of the subjects with culture-positive wound were recommended conservative management, while 14 subjects underwent amputation. Enterococcal isolates showed higher resistance for erythromycin, tetracycline, and ciprofloxacin. Isolates from grade 3 ulcer showed higher frequency of aac(6′)-Ie-aph(2″)-Ia, while all the isolates were negative for aph(2″)-Ib, aph(2″)-Ic, and aph(2″)-Id. The isolates from grade 3 ulcers showed higher resistance to aminoglycosides as well as teicoplanin and chloramphenicol. All the 39 biofilm producers were obtained from polymicrobial wound and showed higher resistance when compared to biofilm non-producers. Higher frequency of isolates carrying aac(6′)-Ie-aph(2″)-Ia in polymicrobial community showing resistance to key antibiotics suggests widespread distribution of aminoglycoside-resistant E. faecalis and their role in worsening diabetic foot ulcers.  相似文献   
6.
In the present study, we investigated the effect of three different sources of hydrogen sulfide (H2S) on sympathetic neurotransmission from isolated superfused bovine iris-ciliary bodies. The three agents under consideration were: ACS67, a hybrid of latanoprost and a H2S-donating moiety; l-cysteine, a substrate for endogenous production of H2S and GYY 4137, a slow donor of H2S. We also examined the contribution of prostaglandins to the pharmacological actions of the H2S donors on release of [3H]-norepinephrine ([3H]NE) triggered by electrical field stimulation. ACS67, l-cysteine and GYY 4137 caused a concentration-dependent inhibition of electrically-evoked [3H]NE release from isolated bovine iris-ciliary bodies without affecting basal [3H]NE efflux. The cyclooxygenase inhibitor, flurbiprofen enhanced the inhibitory action of ACS67 and l-cysteine on stimulated [3H]NE release. Both aminooxyacetic acid, an inhibitor of cystathionine-β-synthase and glibenclamide, a KATP channel blocker reversed the inhibition of evoked NE release induced by the H2S donors. We conclude that H2S donors can inhibit sympathetic neurotransmission from isolated bovine iris-ciliary bodies, an effect partially dependent on the in situ production of H2S and prostanoids, and is mediated by an action on KATP channels.  相似文献   
7.
8.
Estimates of denitrification are one of the key uncertainties in the terrestrial nitrogen (N) cycle, primarily because reliable measurements of this highly variable process—especially the production of its terminal product (N2)—are difficult to obtain. We evaluated the ability of gas-flow soil core and 15N tracer methods to provide reliable estimates of denitrification in forest soils. Our objectives were to: (1) describe and present typical results from new gas-flow soil core and in situ 15N tracer methods for measuring denitrification, (2) discuss factors that affect the relevance of these methods to actual in situ denitrification, and (3) compare denitrification estimates produced by the two methods for a series of sites in a northern hardwood forest ecosystem. Both methods were able to measure accumulations of N2 over relatively short (2–5 h) incubations of either unamended or tracer-amended intact soils. Denitrification rates measured by the direct flux soil core method were very sensitive to incubation oxygen (O2) concentration and decreased with increased O2 levels. Denitrification rates measured by the in situ 15N tracer method were very sensitive to the 15N content of the nitrate (NO3 ?) pool undergoing denitrification, which limits the applicability of this method for quantifying denitrification in N-poor ecosystems. While its ability to provide accurate estimates of denitrification was limited, the 15N tracer method provided estimates of the short-term abiotic and biotic transformations of atmospheric N deposition to gas. Furthermore, results suggest that denitrification is higher and that N2O:N2 ratios are lower (<0.02) than previously thought in the northern hardwood forest and that short-term abiotic and biotic transformations of atmospheric N deposition to gas are significant in this ecosystem.  相似文献   
9.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.  相似文献   
10.

Background

The fourth component of human complement (C4), an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B) in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes.

Results

A novel quantitative real-time PCR (qPCR) technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA). The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118). The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data.

Conclusion

This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号