首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   14篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   7篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1912年   1篇
  1911年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
Active site of human liver aldehyde dehydrogenase   总被引:9,自引:0,他引:9  
Bromoacetophenone (2-bromo-1-phenylethanone) functions as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) and has been found specifically to label a unique tryptic peptide in the enzyme. Amino-terminal sequence analysis of the labeled peptide after purification by two different procedures revealed the following sequence: Val-Thr-Leu-Glu-Leu-Gly-Gly-Lys. Radioactivity was found to be associated with the glutamate residue, which was identified as Glu-268 by reference to the known amino acid sequence. This paper constitutes the first identification of an active site of aldehyde dehydrogenase.  相似文献   
2.
Employing 3,4-dihydroxyphenylacetaldehyde (dopal) as a substrate for human aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) in anaerobic conditions, inactivation of both cytoplasmic E1 and mitochondrial E2 isozymes during catalysis has been observed. Incorporation of 14C-labelled dopal has been demonstrated by retention of label following denaturation and exhaustive dialysis and by peptide mapping following tryptic digestion. Incorporation of label gave linear plots vs. activity remaining with up to two molecules incorporated per molecule of enzyme and 30% activity remaining. Further incorporation (up to 16 molecules) occurred, but was non-linear when plotted vs. activity remaining. Protection against activity loss during incorporation of the first two molecules was afforded by NAD, NADH, chloral, and by chloral and NAD together, the last being the most effective. Saturation kinetics gave y-axis intercepts, suggesting interaction at a specific point on the enzyme surface. The Ki value from saturation kinetics was the same as that from the slope replot in catalytic reaction. Peptide mapping of tryptic digests showed that a single peptide was labelled, confirming specificity of interaction. Even in the absence of complete inactivation, the results suggest that reaction with the first two molecules occurs at some point on the enzyme surface important for enzyme activity. The possibility of such a reaction occurring in vivo is discussed.  相似文献   
3.
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections.  相似文献   
4.

Pearl millet downy mildew (DM) incidence, severity and yield losses of two pearl millet varieties (local and improved) due to the disease were determined in the field. Significant differences in the disease incidence and severity were recorded in the plots sown with metalaxyl-treated seeds and those sown with non-treated seeds, indicating the efficacy of the fungicide on the fungus. Yield losses due to non-treatment of seeds with metalaxyl was 40.88 and 45.39% in a local variety and 43.00 and 18.60% in an improved variety in the 2000 and 2001 cropping seasons respectively. Significant differences between plots sown with metalaxyl-treated and those sown with non-treated seeds were obtained for other yield components such as 1000-grains weight, panicle length and weight.  相似文献   
5.

Background  

Organisms are capable of developing different phenotypes by altering the genes they express. This phenotypic plasticity provides a means for species to respond effectively to environmental conditions. One of the most dramatic examples of phenotypic plasticity occurs in the highly social hymenopteran insects (ants, social bees, and social wasps), where distinct castes and sexes all arise from the same genes. To elucidate how variation in patterns of gene expression affects phenotypic variation, we conducted a study to simultaneously address the influence of developmental stage, sex, and caste on patterns of gene expression in Vespula wasps. Furthermore, we compared the patterns found in this species to those found in other taxa in order to investigate how variation in gene expression leads to phenotypic evolution.  相似文献   
6.
Protein docking methods are powerful computational tools to study protein-protein interactions (PPI). While a significant number of docking algorithms have been developed, they are usually based on rigid protein models or with limited considerations of protein flexibility and the desolvation effect is rarely considered in docking energy functions, which may lower the accuracy of the predictions. To address these issues, we introduce a PPI energy function based on the site-identification by ligand competitive saturation (SILCS) framework and utilize the fast Fourier transform (FFT) correlation approach. The free energy content of the SILCS FragMaps represent an alternative to traditional energy grids and they can be efficiently utilized to guide FFT-based protein docking. Application of the approach to eight diverse test cases, including seven from Protein Docking Benchmark 5.0, showed the PPI prediction using SILCS approach (SILCS-PPI) to be competitive with several commonly used protein docking methods indicating that the method has the ability to both qualitatively and quantitatively inform the prediction of PPI. Results show the utility of the SILCS-PPI docking approach for determination of probability distributions of PPI interactions over the surface of both partner proteins, allowing for identification of alternate binding poses. Such binding poses are confirmed by experimental crystal contacts in our test cases. While more computationally demanding than available PPI docking technologies, we anticipate that the SILCS-PPI docking approach will offer an alternative methodology for improved evaluation of PPIs that could be used in a variety of fields from systems biology to excipient design for biologics-based drugs.  相似文献   
7.
Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10–20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker’s sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.  相似文献   
8.
Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs’ preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide. The pyrophosphate group stays in the bilayer head group region. The isoprenoid moiety shows high flexibility inside the bilayer hydrophobic core, suggesting its potential role as a tentacle to search for OST. The oligosaccharide conformation and dynamics are similar to those in solution, but there are preferred interactions between the oligosaccharide and the bilayer interface, which leads to LLO sugar orientations parallel to the bilayer surface. Molecular docking of the bacterial LLO to a bacterial OST suggests that such orientations can enhance binding of LLOs to OST.  相似文献   
9.
Cooperativity is a central feature in the formation of secondary structures in proteins. However, the driving forces behind this cooperativity are poorly understood. The present work shows that the cooperativity of helix formation in the acetyl-(AAQAA)3-NH2 peptide is significantly enhanced using an empirical force field that explicitly includes the treatment of electronic polarizability. Polarizable simulations yield helical content consistent with experimental measurements and indicate that the dependence of helical content on temperature is improved over additive models, though further sampling is required to fully validate this conclusion. Cooperativity is indicated by the peptide sampling either the coiled state or long helices with relatively low populations of short helices. The cooperativity is shown to be associated with enhanced dipole moments of the peptide backbone upon helix formation. These results indicate the polarizable force field to more accurately model peptide-folding cooperativity based on its physically realistic treatment of electronic polarizability.  相似文献   
10.
Cooperativity is a central feature in the formation of secondary structures in proteins. However, the driving forces behind this cooperativity are poorly understood. The present work shows that the cooperativity of helix formation in the acetyl-(AAQAA)3-NH2 peptide is significantly enhanced using an empirical force field that explicitly includes the treatment of electronic polarizability. Polarizable simulations yield helical content consistent with experimental measurements and indicate that the dependence of helical content on temperature is improved over additive models, though further sampling is required to fully validate this conclusion. Cooperativity is indicated by the peptide sampling either the coiled state or long helices with relatively low populations of short helices. The cooperativity is shown to be associated with enhanced dipole moments of the peptide backbone upon helix formation. These results indicate the polarizable force field to more accurately model peptide-folding cooperativity based on its physically realistic treatment of electronic polarizability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号