首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  2004年   1篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1973年   1篇
  1966年   2篇
  1959年   1篇
  1956年   2篇
  1954年   1篇
  1953年   2篇
  1952年   2篇
  1951年   3篇
  1949年   2篇
  1945年   3篇
  1944年   1篇
  1941年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Cell Cycle Control in Arabidopsis   总被引:1,自引:0,他引:1  
Although the basic mechanism of cell cycle control is conservedamong eukaryotes, its regulation differs in each type of organism.Plants have unique developmental features that distinguish themfrom other eukaryotes. These include the absence of cell migration,the formation of organs throughout the entire life-span fromspecialized regions called meristems, and the potency of non-dividingcells to re-enter the cell cycle. The study of plant cell cyclecontrol genes is expected to contribute to the understandingof these unique developmental phenomena. The principal regulatorsof the eukaryotic cell cycle, the cyclin-dependent kinases (CDKs)and cyclins, are conserved in plants. This review focuses oncell cycle regulation in the plant Arabidopsis thaliana . Whileexpression of one Arabidopsis CDK gene, Cdc2aAt, was positivelycorrelated with the competence of cells to divide, expressionof a mitotic-like cyclin, cyc1At, was almost exclusively confinedto dividing cells. The expression of the Arabidopsis -type cyclinsappears to be an early stage in the response of plant cellsto external and internal stimuli. Arabidopsis thaliana (L.) Heynh.; cell cycle; CDK; cyclin; plant development; plant hormone  相似文献   
2.
3.
4.
5.
6.
7.
8.
The ABSCISIC ACID-INSENSITIVE 3 ( ABI3 ) gene of Arabidopsis thaliana (L.) Heynh is known to play an important role during seed maturation and dormancy. Here, we present evidence suggesting an additional role for ABI3 during vegetative quiescence processes. During growth in the dark, ABI3 is expressed in the apex of the seedlings after cell division is arrested. The 2S seed storage protein gene, a target gene of ABI3 in seeds, is also induced in the arrested apex under similar darkness conditions. In addition, β -glucuronidase expression under the control of the ABI3 promoter is abolished by treatments that provoke leaf development in the dark [sucrose and abscisic acid (ABA) biosynthesis inhibitors] and induced by treatments that prevent leaf development (darkness and ABA). Furthermore, ABI3 expression is absent in apices of dark-grown de-etiolated ( det 1 ) and abi3 mutants, both known to develop leaves or leaf primordia in the dark. The fact that the expression of the ABI3 gene is only observed in a fraction of the analysed plants suggests that ABI3 is probably only one of the components of a molecular network underlying quiescence. In addition to the expression of ABI3 in apices of dark-grown seedlings, the ABI3 promoter confers expression in other vegetative organs as well, such as the stipules and the abscission zones of the siliques. In conclusion, apart from its role in seed development, ABI3 might have additional functions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号