首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   28篇
  2023年   3篇
  2021年   4篇
  2020年   6篇
  2019年   12篇
  2018年   5篇
  2017年   11篇
  2016年   7篇
  2015年   18篇
  2014年   24篇
  2013年   29篇
  2012年   28篇
  2011年   28篇
  2010年   20篇
  2009年   18篇
  2008年   17篇
  2007年   26篇
  2006年   18篇
  2005年   13篇
  2004年   11篇
  2003年   17篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1989年   2篇
  1988年   7篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1966年   1篇
  1960年   2篇
  1956年   1篇
  1927年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
1.
Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.  相似文献   
2.
Synopsis A total of 121 actinistian species belonging to 47 genera and 17 undetermined actinistians is reported from the literature. There are 69 valid species with fair assessment of their phylogenetic position; 21 valid species with poor assessment of their phylogenetic position; 31 actinistian incertae sedis; and 18 taxa that had been identified incorrectly as actinistians or are nomen nuda. The fossil record of the actinistians covers a history of approximately 380 million years. The greatest diversity occurred during the Scythian (Early Triassic).  相似文献   
3.
An adenosine cyclic 3',5'-monophosphate (cAMP) dependent protein kinase has recently been shown to exist in Dictyostelium discoideum and to be developmentally regulated. In this report we have followed the chromatographic behavior of both the holoenzyme and its subunits. A cAMP-dependent holoenzyme could be obtained from the 100000 g soluble fraction after passage through DE-52 cellulose (pH 7.5) and Sephacryl S300. Under conditions of low pH the holoenzyme could be further purified by flat-bed electrofocusing (pI = 6.8). Application of the holoenzyme to electrofocusing at high pH resulted in dissociation of the holoenzyme into a cAMP binding component (pI = 6.1) and a cAMP-independent catalytic activity (pI = 7.4). Dissociation of the holoenzyme into subunits also occurred during histone affinity chromatography and gel filtration chromatography (S300) in the presence of a dissociating buffer. Although the subunit structure was clearly evident during chromatography, the holoenzyme could not be dissociated by simple addition of cAMP to the extract. The catalytic subunit could be purified further by CM-Sephadex, DE-52 cellulose (pH 8.5), histone affinity, and hydrophobic chromatography. The regulatory subunit was further purified by DE-52 cellulose (pH 8.5) and cAMP affinity chromatography. Proof that the cAMP binding activity and the cAMP-independent catalytic activity were in fact the regulatory and catalytic subunits was shown by reconstitution of the cAMP-dependent holoenzyme from the purified subunits. By using these separation procedures, one can obtain from extracts of Dictyostelium the subunits that are free of each other as well as free of any endogenous protein substrates.  相似文献   
4.
The degrees of freezing tolerance acquired by winter wheat (Triticum aestivium L.) and rye (Secale cereale L. cv Puma) were similar following a 4-week cold conditioning and a 24-hour desiccation stress. Soluble proteins were extracted from shoots of cold-conditioned or desiccation-stressed seedlings and electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Quantitative changes in the electrophoretic patterns of the soluble proteins of the different cultivars grown in different environments were detected, but the changes were not equivalent following cold conditioning and desiccation stress. The abundance of two polypeptide bands showed a significant increase correlated to the degree of freezing tolerance and, hence, the polypeptides in these bands may play a role in the development of freezing tolerance.  相似文献   
5.
6.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
7.
Summary The last decade has witnessed successful applications of plant tissue culture techniques in several crops. During that same period, studies in plant molecular genetics have also grown exponentially. Molecular markers (isozymes, RFLPs, and PCR-based markers such as RAPDs) are now used to study many of the current limitations of tissue culture. They have been used to investigate mechanisms that underlie somaclonal variation in the nuclear, mitochondrial, and chloroplast genomes. One recurrent problem with several tissue culture systems has been the difficulty of determining the origin of regenerants. Molecular markers represent powerful tools to determine precisely the origin of plants derived from microspore or anther culture, protoplast fusion, and other tissue culture studies where this information is important. With improvements in tissue culture techniques, populations of doubled haploid lines have been produced in several major crop species. Doubled haploid populations have proven useful in the production of molecular maps and in tagging important agronomic traits. This review describes the use of molecular markers to address fundamental and practical questions of plant tissue culture, and discusses the potential of improvements in molecular techniques and new molecular markers such as SCAR and STS along with high-resolution mapping strategies.  相似文献   
8.
From 1913 to 1980, two zinc smelters in Palmerton, Pennsylvania, emitted large quantities of atmospheric pollutants nearly eliminating forests along a ridge above the town. In 2008, a remediation treatment was applied to the land above one of the smelters that included the planting of several locally adapted plant species. It also included mineral fertilization and mycorrhizal inoculation. One of the species, the Pitch pine (Pinus rigida, Mill.), is a native tree that is both tolerant of metalliferous soils and obligatorily ectomycorrhizal. This report summarizes the results of two observational studies conducted 5 years after the remediation treatment. The first study's objective was to compare ectomycorrhizal communities on treated Pitch pine saplings, with communities on naturally regenerating saplings in an adjacent non-remediated area. The second study's objective was to determine if the composition of the fungal communities on root tips of naturally regenerating Pitch pine saplings differed with distance from the smelters. Fungal community compositions were determined using internal transcribed spacer rRNA sequences. Comparisons of sequences from the remediated and non-remediated sites revealed that communities at the remediated sites had lower taxonomic diversity and were dominated by members of a genus in the remediation inoculant. The results of the smelter-proximity study indicated that although fungal diversity did not differ markedly with distance from the smelters, the relative abundances of some taxa were greater on saplings growing directly above the smelters, where the soils contained highest concentrations of zinc and cadmium.  相似文献   
9.
Intraspecific variation among 84 isolates of the anamorphic fungusChaunopycnis alba from 26 different geographical locations was analyzed by investigating optimal growth temperatures, differences in the production of secondary metabolites and presence or absence of the cyclosporin synthetase gene. The genetic diversity was assessed using random amplified polymorphic DNA (RAPD). Analysis of these data showed high genetic, metabolic and physiological diversity within this species. Isolates from the Antarctic represented the most homogeneous group withinC. alba and together with isolates from the Arctic these polar strains differed from alpine, temperate and tropical strains by low optimal growth temperatures and by low production of secondary metabolites. Isolates from tropical climes were characterized by high optimal growth temperatures and by the production of comparatively diverse metabolite spectra. Most of the isolates that were similar in the combination of their physiological and metabolic characters were also genetically related. Isolates from different geographical origins did not show many similarities, with the exception of the cyclosporin A-producing isolates, and large diversity could be observed even within a single habitat. This leads us to the suggestion that for pharmaceutical screening programs samples should be collected from a diversity of different geographical and climatic locations. For the selection of strains for screening the RAPD assay seems to be the most powerful tool. It reflected the highest intraspecific diversity and the results corresponded well with the other characteristics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号