首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2013年   2篇
  2012年   4篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 272 毫秒
1
1.
Following publication of On the Origin of Species, biologists concentrated on and resolved the mechanisms of adaptation and speciation, but largely ignored extinction. Thus, extinction remained essentially a discipline of palaeontology. Adequate language is not available to describe extinction phenomena because they must be discussed in the passive voice, wherein populations simply ‘go extinct’ without reference to process, specifics, effects, or causality. Extinction is also described typically in terms of its dynamics (including rate or risk), and although correlative variables enhance our ability to predict extinction, they do not necessarily enable an understanding of process. Yet background extinction, like evolution, is a process requiring a functional explanation, without which it is impossible to formulate mechanisms. We define the mechanism of background extinction as a typically long‐term, multi‐generational loss of reproductive fitness. This simple concept has received little credence because of a perception that excess generation of progeny ensures population sustainability, and perhaps the misconception that the loss of reproductive fitness somehow constitutes selection against reproduction itself. During environmental shifts, reproductive fitness is compromised when biotic or abiotic extremes consistently exceed existing norms of reaction. Subsequent selection will now favour individual survival over reproductive fitness, initiating long‐term negative selection pressure and population decline. Background extinction consists typically of two intergrading phases: habitat attenuation and habitat dissolution. These processes generate the relict populations that characterize many species undergoing background extinction. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 255–268.  相似文献   
2.
1. Recent studies have demonstrated that there is generally no unambiguous relationship between plant species composition and specific environmental conditions in rivers. Nevertheless, indices of environmental pressures based on macrophytes are flourishing, because of the requirements of the Water Framework Directive (WFD). 2. We first reviewed nine such indices against 13 criteria for bioindicators. Then, using data from France and England, we tested whether the IBMR (Macrophyte Biological Index for Rivers) and LEAFPACS (predictions and classification system for macrophytes) methods could reliably indicate nutrient and hydromorphological pressures. Finally, we used an improved bootstrapping method to estimate accuracy. 3. Currently, most indices lack ecological meaning for a variety of reasons, including partial sampling (backwaters are excluded); reliance on list of taxa (there are identification difficulties) rather than structure and functions; correlation rather than causation; application within a limited biogeographical area; reliance on ‘expert’ judgement; high precision but poor accuracy; poorly defined reference conditions; lack of independent tests; and an inability to discriminate reliably between the target pressures of interest from confounding background variables. 4. IBMR was a far better indicator of pH (or HCO3pCO2) than it was of soluble reactive phosphorus, SRP (or SRP‐NH4). While there was a highly significant correlation between IBMR and SRP after removing the effect of pH, the relationship was weak (r2 = 0.08, n = 215, P < 0.001). 5. LEAFPACS is a multi‐metric method summing up five individual indices, each compliant with the WFD. Its individual metrics were not better correlated with nutrient and hydromorphological pressures (with r2 < 0.1, n = 62, P < 0.05) than was the IBMR. The meaning of the overall metric is questionable. 6. There are problems in determining the precision of the indices, owing to uncertainties in recording, but they are less than the uncertainties in determining accuracy (because species optima and tolerances are sometimes poorly known). 7. Reliable information is needed to improve the state of our rivers. Macrophyte indices are able to detect statistically significant pressures from a large population of sites but cannot be applied at specific sites, as required by the WFD, owing to large uncertainties and low explanatory power. Typically, more than 90% of the variability in macrophyte indices is attributed to factors other than human pressure. The WFD would be better served by a simpler, holistic approach based on our current mechanistic understanding of river processes. These findings are likely to apply also to other taxonomic groups (macroinvertebrates, diatoms, fish) used in the assessment of purported ecological quality and to palaeolimnological measures of reference status.  相似文献   
3.
We investigated the function of ASN2, one of the three genes encoding asparagine synthetase (EC 6.3.5.4), which is the most highly expressed in vegetative leaves of Arabidopsis thaliana. Expression of ASN2 and parallel higher asparagine content in darkness suggest that leaf metabolism involves ASN2 for asparagine synthesis. In asn2‐1 knockout and asn2‐2 knockdown lines, ASN2 disruption caused a defective growth phenotype and ammonium accumulation. The asn2 mutant leaves displayed a depleted asparagine and an accumulation of alanine, GABA, pyruvate and fumarate, indicating an alanine formation from pyruvate through the GABA shunt to consume excess ammonium in the absence of asparagine synthesis. By contrast, asparagine did not contribute to photorespiratory nitrogen recycle as photosynthetic net CO2 assimilation was not significantly different between lines under both 21 and 2% O2. ASN2 was found in phloem companion cells by in situ hybridization and immunolocalization. Moreover, lack of asparagine in asn2 phloem sap and lowered 15N flux to sinks, accompanied by the delayed yellowing (senescence) of asn2 leaves, in the absence of asparagine support a specific role of asparagine in phloem loading and nitrogen reallocation. We conclude that ASN2 is essential for nitrogen assimilation, distribution and remobilization (via the phloem) within the plant.  相似文献   
4.
Sclerasterias richardi, a relatively deep sea asteroid (140–200 m) from the border of the Mediterranean continental shelf, is characterized by an asexual reproduction by fissiparity concomitant with a functional sexuality.

A monthly sampling of a population from Calvi (Corsica) has allowed a study of the complete sexual cycle from 354 histologically-treated specimens.

The 218 sexually defined animals (62% males, 38% females) show strict gonochorism. In males, spermatogenesis is cyclic and sexual maturity seems to be reached before that of the females. In females, the different stages of oogenesis are well marked: oogonia and parietal oocytes disappear only at maturity. Oligolecithic oocytes (120–150 μn) show a synchronous growth.

The annual reproductive cycle is well defined in both sexes with one spawning period from mid-September to mid-October.

After spawning, a resting period (from mid-October to mid-January) occurs during which unspawned oocytes are phagocytized by more or less isolated accessory cells. These phagocytic cells have never been found in male specimens.

Each month the presence of specimens without gonads or unsexable individuals is one of the characteristics of this cycle. Their high proportion during the organization stage and after spawning can be easily explained. In March they are frequent too, owing to the infestation of gonads by Ciliates.

As shown by our samples, the bottom water temperature is nearly the same during the whole year and cannot be directly involved as the dominant exogenous variable stimulating spawning.

As a consequence of fissiparity which affects the main part of the population there is a great inter- and intra-individual variability.

The reproductive potentiality is low: as a female emits approximatly 400–500 ova whose development produces planktotrophic larvae with a long pelagic life, it is clear that sexual reproduction is accessory in comparison with asexual reproduction by fission.  相似文献   
5.
The Mozambique tilapia Oreochromis mossambicus (Teleostei, Cichlidae) has been transplanted worldwide during the 20th century, and now belongs to the list of the most invasive species. Using a geometric morphometric approach, we describe body shape differentiation among 15 populations from native (Mozambique) and invaded (New Caledonia and Guadeloupe) ranges. A dominant phylogeographic signal is detected, despite the broad range of environmental conditions at the local scale. This result suggests that phylogeographic background rather than phenotypic plasticity responding to environmental variation constitutes the main factor correlated with shape divergence. This could result from successive founder events that occurred during the process of colonization of new geographic areas, and therefore strongly suggests heritable phenotypic differentiation. In addition, shape changes along a major axis of divergence hypothetically refer to different swimming abilities, possibly related to divergent functional requirements between the native and invaded ranges. Overall, patterns of contemporary shape diversification in O. mossambicus probably result from both phylogenetic constraints and adaptive divergence processes. We show that critically taking into account recent phylogenetic history of populations as a constraint on rapid phenotypic divergence is necessary for an improved view of contemporary evolution. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 369–381.  相似文献   
6.
1. δ13C and δ15N stable isotope signatures combined with an in situ microphytobenthic 13C labelling experiment were performed on epilithic biofilms of a large temperate river (the Garonne, France) to infer the trophic positioning of biofilm‐dwelling meiofauna and their uptake of microphytobenthic carbon. 2. Chironomidae larvae and Chromadorina spp. nematodes rapidly incorporated freshly produced microphytobenthic carbon in contrast to Rhyacophilidae larvae and Naididae oligochaetes. Quantitatively, macrofaunal Chironomidae incorporated more microphytobenthic carbon per day than did meiofauna. Moreover, Chironomidae seemed more involved in the spatial export of microphytobenthic carbon than nematodes. 3. Rhyacophilidae larvae were predators feeding on large meiofauna (Naididae and Chironomidae) but not on nematodes. Naididae oligochaetes primarily gained their carbon from allochthonous and/or microbial‐loop recycled sources. 4. A rapid and significant loss of labelled microphytobenthic carbon was observed. Feeding activity of biofilm‐dwelling invertebrates seemed not to be primarily involved in this loss.  相似文献   
7.
A nerillid species new to science is described from the marine aquarium system of Moscow Zoo. Trochonerilla mobilis gen. et sp.n. is characterized by eight chaetigerous segments, three antennae, absence of palps, parapodia with two bundles of simple chaetae and pygidium with two anal cirri. In contrast to other eight-segmented nerillids, Trochonerilla mobilis are very active and mobile animals. They are also able to swim through the water column by means of the strong ring of cilia on the first chaetigerous segment. Their geographical origin is unknown.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号