首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2006年   2篇
  1999年   1篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 204 毫秒
1
1.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   
2.
3.
Barley (Hordeum vulgare L., cvs Golf, Mette, and Laevigatum)was grown under nitrogen limitation in solution culture untilnear maturity. Three different nitrogen addition regimes wereused: in the ‘HN’ culture the relative rate of nitrate-Naddition (RA) was 0·08 d–1 until day 48 and thendecreased stepwise to, finally, 0·005 d–1 duringgrain-filling; the ‘LN’ culture received 45% ofthe nitrogen added in HN; the ‘CN’ culture was maintainedat RA 0·0375 d–1 throughout. Kinetics of net nitrateuptake were measured during ontogeny at 30 to 150 mmol m–3external nitrate. Vmax (which is argued to reflect the maximuminflux rate in these plants) declined with age in both HN andLN cultures. A pronounced transient drop was observed just beforeanthesis, which correlated in time with a peak in root nitrateconcentration. Similar, but less pronounced, trends were observedin CN. The relative Vmax (unit nitrogen taken up per unit nitrogenin plants and day) in all three cultures declined from 1·3–2·3d–1 during vegetative growth to 0·1–0·7d–1 during generative growth. These values are in HN andLN cultures 15- to more than 100-fold in excess of the demandset by growth rates throughout ontogeny. Predicted balancingnitrate concentrations (defined as the nitrate concentrationrequired to support the observed rate of growth) were below6·0 mmol m–3 in HN and LN cultures before anthesisand then decreased during ontogeny. In CN cultures the balancingnitrate concentration increased during grain-filling. Apartfrom the transient decline during anthesis, most of the effectof ageing on relative Vmax can be explained in terms of reducedcontribution of roots to total biomass (R:T). The loss in uptakeper unit root weight is largely compensated for by the declinewith time in average tissue nitrogen concentrations. The quantitativerelationships between relative Vmax and R:T in ageing plantsare similar to those observed for vegetative plants culturedat different RAs. The data support the contention that the capacity for nitrateacquisition in N-limited plants is under general growth control,rather than controlled by specific regulation of the biochemicalpathway of nitrate assimilation. Key words: Barley, nitrogen concentration, root: total plant biomass ratio, Vmax  相似文献   
4.
Barley (Hordeum vulgare L., cvs Golf and Laevigatum) was grownunder nitrogen limitation in solution culture until near maturity.Three different nitrogen addition regimes were used: in the‘HN’ culture, the relative rate of nitrate-N additionwas 0·08 d–1 until day 48 and then stepwise decreasedto, finally, 0·005 d–1 during late grain-filling;the ‘LN’ culture received 45% of the nitrogen addedin HN; the ‘CN’ culture was maintained at RA 0·0375d–1 throughout growth. At four different growth stages(vegetative,anthesis, and twice during grain-filling), 15N-nitrate was fedto the plants. In some cases (‘split root cultures’),label was fed only to one-half of the root system. These wereharvested directly after labelling, whereas ‘standardcultured’ plants were harvested at termination of theexperiment (day 148). Absorption of added nitrate was nearlycomplete in the HN and LN cultures, and translocation of nitrogenwithin the plants could thus be studied independently of differencesin nitrate absorption. Cycling of nitrogen absorbed by vegetativeplants accounted for up to 50% of the nitrogen recovered inthe roots. The sink strength of the roots for cycling nitrogen,however, declined during post-anthesis growth, and net lossof nitrogen from both roots and vegetative shoot tissue occurredconcomitantly with incorporation of labelled 15N-nitrogen. Thenitrogen of the vegetative shoot tissue was substantially lesslabelled than the nitrogen entering the ears, indicating thattranslocation of recently absorbed nitrogen to ears occurs withminor prior exchange with the bulk nitrogen of shoots. In caseswhere the sink strength of the ears was weak, as in LN-culturedLaevigatum (due to high frequency of sterile flowers) and inCN-cultured Golf, nitrogen translocated from roots appearedto be incorporated into the vegetative shoot tissue. There werealso indications that a fraction of the remobilized nitrogenwas actually lost from the plants in these cases. It is concludedthat the root remains efficient in translocation of nitrogento the aerial parts throughout ontogeny and that nitrogen takenup during grain–filling is preferentially directly translocatedto the developing grains. The further translocation of nitrogenreceived by vegetative shoot parts to ears appears mainly relatedto the potential of the ear to accumulate nitrogen. Nitrogenabsorbed/remobilized in excess of the sink strength of the earsis either invested in continued shoot growth, or is irreversiblylost from the plants. Key words: Barley, 15N-labelling, post-anthesis, remobilization, translocation  相似文献   
5.
Three methods were used to study N2 fixation and effects ofwater deficit on N2 fixation: C2H2 reduction assay (ARA), 15Ndilution technique and accumulated N content. In addition, 15Ndilution was calculated both in a traditional way and in a modifiedway, which takes into consideration N and 15N content for theplants before the experiment started. The three methods wereapplied on the following Rhizobium-symbioses: Acacia albidaDel (Faidherbia albida (Del) A. Chev.) and Leucaena leucocephala(Lam) de Wit., and the Frankia-symbiosis Casuarina equisetifoliaL. The plants wereabout 4-months-old when they were harvested. Nitrogen derived from N2 fixation in control plants of Acaciaalbida was 54·2 mg as measured with ARA, while it was28·5 mg as measured with the 15N dilution technique,compared to 30·7 mg calculated as accumulated N. In comparison,L. leucocephala fixed 41·6 mg N (ARA), 53·5 mgN(15N dilution technique) and 56·3 mg N (accumulatedN). The Frankia-symbiosis had fixed 27·4 mg N as measuredby ARA, 8·1 mg N as measured by 15N dilution techniqueand 12·3 mg N as accumulated N. There were no differencesbetween the estimates based ontraditional and modified waysof calculating 15N dilution. The immediate effect of water deficit treatment on N2 fixationwas continuously measured inall species with ARA, which startedto decrease approximately 10 d after the initiation of the treatment,and declined to less than 5% of the initial level after 21–28d. The decrease in the amount of N derived from N2 fixation wasstudied in L. leucocephala during the period of treatment. Therewas a 26% decrease in amount of N derived from N2 fixation asresult of water deficit (as measured with ARA), while the decreasewas 23% when measured withboth the 15N dilution method and asaccumulated N. The three different methods for measuring N2 fixation and effectsof water deficit on N2 fixation are discussed. Key words: Acacia albida, ARA, Casuarina equisetifolia, Leucaena leucocephala, 15N dilution, N2N fixation, water deficit  相似文献   
6.
The NH3 compensation point (χNH3) in Hordeum vulgare cvs Golf and Laevigatum was determined at different growth stages under controlled environmental conditions. The plants were grown to maturity in hydroponics under N limitation. When plants were exposed to NH3 at realistic ambient levels ranging from 0 to 25 nmol NH3 mol?1 air at an air temperature of 20°C, a significant (P < 0.001) linear correlation between the NH3 flux and the atmospheric NH3 mole fraction was observed, showing a constant conductivity to NH3 exchange irrespective of the NH3 level. For both cultivars a marked decrease in χNH3 was observed in the period from tillering to anthesis. In cv. Golf, χNH3 decreased from 6.4 ± 1.1 to 3.0 ± 0.4 nmol NH3 mol?1 air, while χNH3 in cv. Laevigatum dropped from 4.2 ± 0.3 nmol NH3 mol?1 air to below the detection limit (< 0.9 nmol NH3 mol?1 air). The NH3 compensation points increased again during senescence, peaking at 5.3 ± 0.8 nmol NH3 mol?1 air for cv. Laevigatum. The modern and high-yielding cv. Golf had significantly higher (P < 0.01) NH3 compensation points than the old and primitive cv. Laevigatum. Golf also had higher shoot NH4+ and total nitrogen concentrations than Laevigatum. During generative growth the ratio between NH3 and water vapour conductivities increased 10-fold, suggesting a shortening of the diffusive path length for NH3 compared to H2O during leaf senescence.  相似文献   
7.
Growth and nitrate uptake kinetics in vegetatively growing barley(Hordeum vulgare L., cvs Laevigatum, Golf, and Mette) were investigatedin solution culture under long-term limitations of externalnitrogen availability. Nitrate was fed to the cultures at relativeaddition rates (RA) ranging from 0.02 to 0.2 d–1. Therelative growth rate (RG, calculated for total plant dry weight)correlated well with RA in the range 0.02 to 0.07 d–1.In the RA range from 0.07 to 0.2 d–1 RG continued to increase,but an increasing fraction of nitrogen, added and absorbed,was apparently stored rather than used for structural growth.The RG of the roots was less affected by RA. Vmax, for net nitrateuptake increased with RA up to 0.11 d–1, but decreasedat higher RA. The decline in Vmax coincided with a build-upof nitrate stores in both roots and shoots. Vmax, expressedper unit nitrogen in the plants (the relative Vmax, was higherthan required for maintenance of growth (up to 30-fold) at lowRA, whereas at higher RA the relative Vmax decreased. Kineticpredictions of steady-state external nitrate concentrationsduring N-limited growth ranged from 0.2 to 5.0 mmol m–3over the RG range 0.02 to 0.11 d–1. It is suggested thatthe nitrate uptake system is not under specific regulation atlow RA, but co-ordinated with root protein synthesis and growthin general. At RA higher than 0.11 d–1, however, specificregulation of nitrate uptake, possibly via root nitrate pools,become important. The three cultivars showed very similar growthand nitrate uptake characteristics. Key words: Barley, growth, nitrogen limitation, nitrate uptake, kinetics  相似文献   
8.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   
9.
Growth of barley (Hordeum vulgare L., cvs Golf, Mette, and Laevigatum)under N-limitation was investigated in solution culture, withspecial emphasis on the generative growth stage. Three differentregimes for limiting nitrate-N availability while keeping otherelements in surplus were employed. In the ‘high, decreasingnitrogen’ (HN) treatment, the relative nitrogen additionrate (RA) was maintained at 0.08 d–1 until the ears startedto develop and was then decreased stepwise to, finally, RA 0·005d–1. In the ‘low, decreasing nitrogen’ (LN)treatment, plants received 45% of the nitrogen added in HN.In the ‘constant nitrogen’ (CN) treatment, RA washeld constant at 0·0375 d–1. Cumulative nitrogenadditions at termination of the experiment (day 147 after sowing)were 192, 179 and 87 mg plant–1 for HN, CN, and LN cultures,respectively. Nitrogen availability limited nitrogen acquisitionin all treatments except in the CN culture at plant ages above110 d. Stepwise decrease of RA largely synchronized transitionsin developmental stages in the different cultivars and nitrogenregimes (HN and LN), and eventually yielded plants that wereclose to completing their life cycle. Normal maturation wasnot obtained in the CN treatment. The HN and LN treatments wereused for formal analysis of post-anthesis growth. A sigmoidfunction was fitted to growth data and from this, organ weightsand nitrogen concentrations at maturity (defined as cessationof growth) were derived. The two modern cultivars, Golf andMette, clearly outperformed the more primitive cv. Laevigatumin terms of allocation of nitrogen to ears, particularly inthe LN culture. The stepwise decrease of RA appears suitablefor studies of post-anthesis growth and nitrogen relations inbarley, with regard to both genotypic variation and variationcaused by differences in cumulative amounts of nitrogen added. Key words: Barley, development, growth, nitrogen concentration, post-anthesis  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号