首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   8篇
  209篇
  2014年   3篇
  2013年   4篇
  2011年   4篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1996年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1963年   1篇
  1959年   7篇
  1958年   14篇
  1957年   8篇
  1956年   20篇
  1955年   9篇
  1954年   6篇
  1953年   8篇
  1952年   10篇
  1951年   8篇
  1950年   6篇
  1949年   1篇
  1948年   2篇
  1939年   1篇
排序方式: 共有209条查询结果,搜索用时 0 毫秒
1.
2.
3.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   
4.
5.
6.
1. This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water‐quality standards. 2. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near‐infrared (NIR)‐Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. 3. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral‐derived NDVI. The IKONOS‐based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. 4. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High‐resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. 5. Interpretation of biophysical parameters derived from high‐resolution satellite or airborne imagery should prove to be a valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments.  相似文献   
7.
A method was developed to produce radiolabeled 3-hydroxy-L-kynurenine by injection of [14C]-L-tryptophan into pupae of the heliconid butterfly, Heliconius charitonia, which was converted into [14C]-3-hydroxy-L-kynurenine and deposited as a wing pigment. Extractions of 3-hydroxykynurenine (3-OHK) with 60% methanol from wings yielded in 14.4 μg per mg dry weight. In extracts from yellow wing areas, 3-OHK represented 100% of detectable amino acids. Resulting specific radioactivity of [14C]-3-OHK was between 0.05 and 0.07 mCi/mmol when 0.5 μCi [14C]-tryptophan was injected into pupae 1 or 2 days before emergence of the butterfly. Incorporation of [14C]-3-OHK into wing ommochromes was studied in nymphalid butterflies, Araschnia levana and Precis coenia. After injection into pupae [I4C]-3-OHK as well as [14C]-tryptophan were specifically incorporated into red and red-brown wing scales as shown by autoradiography. The same incorporation occurred in isolated wings after incubation in Grace's medium containing [14C]-3-OHK. In Araschnia levana, [14C]-3-OHK offered to left wing pairs was incorporated into dihydroxanthommatin six times more effectively than [14C]-tryptophan offered to right wing pairs from the same specimen. Therefore, 3-OHK seems to be the ultimate precursor of wing ommatins.  相似文献   
8.
The European Starling Sturnus vulgaris is an introduced species in North America and is an aggressive competitor for tree cavity nest‐sites. Starlings are commonly considered to influence nest‐site selection and reproductive success of native cavity‐nesting species negatively. We examined the relationship between Starling nest density and the fecundity of two native secondary cavity‐using passerines, Mountain Bluebird Sialia currucoides and Tree Swallow Tachycineta bicolor. We monitored a total of 622 nests (approximately equal numbers for each of the three species) in woodpecker‐excavated and naturally occurring cavities in 29 small forest groves in central British Columbia, Canada, between 2000 and 2009. The dimensions of cavities used and the timing of nest initiation overlapped for all species, although Starlings initiated clutches earliest. Mixed‐effects models were used to assess whether nest abundance, clutch size or nest success were affected directly by Starling nest abundance, or indirectly via a shift in cavity selection or timing of breeding. Starlings and Mountain Bluebirds showed inverse trends in nest abundance. Mountain Bluebird clutch sizes were smaller if they were initiated later in the breeding season. There was weak evidence that Tree Swallow clutch size decreased with cavity depth when Starling nests were abundant, and increased with cavity depth where there were few Starling nests. We conclude that despite the aggressive nature of this exotic cavity‐nester, the influence of Starlings on native secondary cavity‐nesting passerines is modest where cavities are abundant.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号