首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  1995年   2篇
  1993年   1篇
排序方式: 共有3条查询结果,搜索用时 312 毫秒
1
1.
Michael Luwe  Ulrich Heber 《Planta》1995,197(3):448-455
Spinach (Spinacia oleracea L.), broad bean (Vicia faba L.) and beech (Fagus sylvatica L.) plants were exposed to ozone at concentrations often measured in air during the summer months (120–300 g·m–3) and antioxidants were determined in the leaf tissue and in the aqueous phase of the cell wall, the apoplasm. Concentrations of both reduced ascorbate (AA) and its oxidized form, dehydroascorbate (DHA), showed the tendency to increase transiently in the apoplasm of spinach leaves 6–24 h after starting fumigation with ozone. In beech leaves, apoplasmic AA and DHA increased 3–7 d after beginning of treatment. At the very high concentration of 1600 g O3·m–3, an increase of apoplasmic AA was already measured after 1 d in beech leaves. Apparently, spinach and beech leaves respond to oxidative stress by increasing AA transport into the apoplasm and by accelerating DHA export. In contrast to these observations, DHA accumulated during 3 d of fumigation with only 120 g O3·m–3 in the apoplasm of broad bean leaves, while AA contents did not increase. After termination of fumigation, the extracellular redox state of ascorbate normalized within 1 d. Glutathione could not be detected in the apoplasm of any of the three leaf species. Intracellular AA changed its redox state in response to exposure to elevated concentrations of ozone. After 4–6 weeks of fumigation with 200–300 g O3·m–3 an increase of intracellular DHA was measured in beech leaves. At the same time, chlorophyll contents decreased and characteristic symptoms of ozone damage could be observed. However, no significant change in the redox state of apoplasmic ascorbate could be detected in beech leaves. Evidently, detoxification of ozone by apoplasmic AA was insufficient to protect the leaf tissue. Fumigation with a high ozone concentration (1600 g·m–3) caused an appreciable increase in the cellular contents of the oxidized forms of ascorbate and glutathione in beech leaves. Whereas in spinach leaves intracellular antioxidant contents and redox states were not altered during fumigation with 120–240 g O3·m–3, in broad bean leaves the intracellular DHA concentration increased and intracellular ascorbate became more oxidized after fumigation of the plants with 120 g O3·m–3. Apparently, broad bean leaves are more sensitive to ozone than beech and spinach leaves.Abbreviations AA ascorbate, reduced form - DHA ascorbate, oxidized form (dehydroascorbate) - FW fresh weight - GSH glutathione, reduced form - GSSG glutathione, oxidized form - IWF intercellular washing fluid - Vair intercellular air space volume of leaves - Vapo apoplasmic water volume of leaves This work was supported within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   
2.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   
3.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号