首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   24篇
  国内免费   2篇
  2023年   1篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   11篇
  2017年   4篇
  2016年   10篇
  2015年   16篇
  2014年   14篇
  2013年   26篇
  2012年   29篇
  2011年   39篇
  2010年   16篇
  2009年   12篇
  2008年   11篇
  2007年   15篇
  2006年   13篇
  2005年   11篇
  2004年   9篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   12篇
  1997年   4篇
  1996年   2篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有386条查询结果,搜索用时 187 毫秒
1.
1. It is hypothesised that ecological restoration in grasslands can induce an alternative stable state shift in vegetation. The change in vegetation influences insect community assemblages and allows for greater functional redundancy in pollination and refuge for native insect species. 2. Insect community assemblages at eight coastal California grassland sites were evaluated. Half of these sites had undergone restoration through active revegetation of native grassland flora and half were non‐restored. Insects were collected from Lupinus bicolor (Fabaceae) within 2 × 2‐m2 plots in spring 2017. Lupinus bicolor is a common native species that is used in California restoration projects, and home and state landscaping projects. 3. Ordination demonstrated that insect community assemblages were different between restored and non‐restored sites. These differences were seen in insect functional groups as well as taxa‐specific differences and were found to be driven by environmental characteristics such as non‐native forb cover. 4. Functional redundancy of herbivores decreased at restored sites, while pollinators became more redundant compared with non‐restored sites. The assemblages of the common species found at restoration sites contained more native insects than those found at non‐restored sites, including species such as Bombus vosnesenskii. 5. Local grassland restoration has the potential to induce an alternative stable state change and affect insect community assemblages. Additionally, it was found that grassland restoration can be a potential conservation tool to provide refugia for bumblebees (Bombus), but additional studies are required to fully understand its broader applicability.  相似文献   
2.
The inhibitory effect of butanol on yeast growth has been studied for the strain Candida utilis ATCC 8205 growing aerobically on butanol under batch conditions. A mathematical expression was then proposed to fit the kinetic pattern of butanol inhibition on the specific growth rate: \documentclass{article}\pagestyle{empty}\begin{document}$$ \mu = \frac{{\mu _m S}}{{K_s + S}}\left[{1 - \frac{S}{{S_m }}} \right];n $$\end{document}The maximum allowable butanol concentration above which cells do not grow was predicted to be 9.16g/L. The proposed model appears to accurately represent the experimental data obtained in this study and the literature data developed for a variety of batch culture systems at widely ranging substrate concentrations.  相似文献   
3.
A combination of extended Monod kinetics and the diffusional equation was used for evaluating the effectiveness factor of entrapped immobilized cells. Based on the kinetics of Zymomonas mobilis reported in the literature, the numerical results have revealed that the problem of mass transfer diffusional restrictions can be neglected by using small beads (1 mm in diameter) with a corresponding cell loading up to 276 g/L gel. On the basis of the numerical results obtained, the application of immobilized cells for continuous ethanol production was investigated. The kappa-carrageenan method was utilized to entrap Z. mobilis CP4, a potential ethanol producer. A two stage fermentation process has also been developed for ethanol production by the Z. mobilis carrageenan-bound cells. About 90 g/L ethanol was produced by immobilized cells at a total residence time of 1.56 h. The ethanol yield was estimated to be 93% of theoretical. The results obtained in this study also indicated that the control of optimum pH in an immobilized cell column is necessary to enhance the rate of ethanol production.  相似文献   
4.
Kinetics of ethanol inhibition in alcohol fermentation   总被引:3,自引:0,他引:3  
The inhibitory effect of ethanol on yeast growth and fermentation has been studied for the strain Saccharomyces cerevisiae ATCC No. 4126 under anaerobic batch conditions. The results obtained reveal that there is no striking difference between the response of growth and ethanol fermentation. Two kinetic models are also proposed to describe the kinetic pattern of ethanol inhibition on the specific rates of growth and ethanol fermentation: \documentclass{article}\pagestyle{empty}\begin{document}$$\begin{array}{*{20}c} {\frac{{\mu _i }}{{\mu _0 }} = 1{\rm } - {\rm }\left( {\frac{P}{{P_m }}} \right);\alpha } \hfill & {\left( {{\rm for}\ {\rm growth}} \right)} \hfill \\ {\frac{{\nu _i }}{{\nu _0 }} = 1{\rm } - {\rm }\left( {\frac{P}{{P'_m }}} \right);\beta } \hfill & {\left( {{\rm for}\ {\rm ethanol}\ {\rm production}} \right)} \hfill \\ \end{array}$$\end{document} The maximum allowable ethanol concentration above which cells do not grow was predicted to be 112 g/L. The ethanol-producing capability of the cells was completely inhibited at 115 g/L ethanol. The proposed models appear to accurately represent the experimental data obtained in this study and the literature data.  相似文献   
5.
6.
Natural selection, in the form of balancing selection or selective sweeps, can result in a decoupling of the amounts of molecular polymorphism and divergence. Thus natural selection can cause some areas of DNA sequence to have greater silent polymorphism, relative to divergence between species, than other areas. It would be useful to have a statistical test for heterogeneity in the polymorphism to divergence ratio across a region of DNA sequence, one that could identify heterogeneity greater than that expected from the neutral processes of mutation, drift, and recombination. The only currently available test requires that a region be arbitrarily divided into sections that are compared with each other, and the subjectivity of this division could be problematic. Here a test is proposed in which runs of polymorphic and fixed sites are counted, where a "run" is a set of one or more sites of one type preceded and followed by the other type. The number of runs is smaller than otherwise expected if polymorphisms are clumped together. By simulating neutral evolution and comparing the observed number of runs to the simulations, a statistical test is possible which does not require any a priori decisions about subdivision.   相似文献   
7.
Together with flow injection analysis (FIA), a chemiluminescence (CL) fiber optic biosensor system has been developed for determining glutamine in animal cell cultures. Glutaminase (GAH) and glutamate oxidase (GLO) were onto separate porous aminopropyl glass beads via glutaraldehyde activation and packed to form an enzyme column. These two enzymes acted in sequence on glutamine to produce hydrogen peroxide, which was then reacted with luminol in the presence of ferricyanide to produce a light signal. An anion exchanger was introduced on-line to eliminate interfering endogenous glutamate in view of its negative charge at pH above 3.22 (isoelectric pH). Among several resins tested, the acetate form was most effective, and this type of ion exchanger also effectively adsorbed uric acid, acetaminophen, and aspartic acid.There was an excellent linear relationship between the CL response and standard glutamine concentration in the range 1 to 100 muM. A complete analysis could be performed in 2 min, including sampling and washing with a good reproducibility (+/- 4.4%). Both the bi-enzymic and ion exchange columns were useful for at least 500 analyses when the biosensor system was applied for the glutamine determination in murine hybridoma cell cultures and insect cell cultures. The values obtained compared well with those of HPLC, thus validating the applicability of the CL fiber optic system. (c) 1993 John Wiley & Sons, Inc.  相似文献   
8.
Continuous calorimetry has been applied to monitoring the heat evolution of Saccharomyces cerevisiae grown on d-glucose. The heat evolution, together with the energy and carbon balances, was used to evaluate the energetic efficiency of biomass, by-product biosynthesis, fermentative heat evolution as well as the maintenance energy of S. cerevisiae in ‘aerobic fermentation’ and ‘aerobic respiration’. In aerobic fermentation, under catabolite repression, the fraction of substrate energy converted to heat evolution, maintenance requirement, and biomass decreased with the increase of d-glucose concentration. The fraction of substrate energy converted to ethanol is the highest value and it could contribute up to 70% of the total substrate energy. In aerobic respiration, 43% of the total substrate energy was evolved as heat. While 50% of the total substrate energy was converted into biomass, only 7% of the total substrate energy was used for maintenance functions. The maintenance energy coefficient of S. cerevisiae was determined to be 0.427 MJ kg?1 cell h?1 (0.102 kcal g?1 cell h?1). For the first time, heat evolution together with yield-maintenance energy was used to predict biomass concentration during the fed-batch cultivation of S. cerevisiae.  相似文献   
9.
An amperometric biosensor for hypoxanthine was constructed by forming a layer of crosslinked xanthine oxidase on a platinum electrode, followed by electropolymerization of a submonolayer film of resorcinol and para-diaminobenzene. The fabricated electrodes were evaluated for speed of response, sensitivity, and reusability. Optimal performance was obtained with enzyme-based electrodes sparsely covered with film which was formed by electropolymerization in less than 6 min. The resulting electrodes exhibited linear response to hypoxanthine in the. range 5-300 muM with a response time of 2 min. Application of the biosensor in monitoring hypoxanthine content of fish extracts yielded results which agreed well with spectrophotometric assays using soluble xanthine oxidase. The biosensor was stable for 60 days when stored at 4 degrees C in phosphate buffer and it could be used continuously for 6 h with over 50 assays.  相似文献   
10.
A biosensor system based on the difference in the oxygen uptake response of two microbial electrodes was developed to monitor trimethylamine (TMA). The first electrode, constructed using Pseudomonas aminovorans grown on TMA, was sensitive to TMA, trimethylamine N-oxide (TMAO), dimethylamine (DMA) and monomethylamine (MMA). The second electrode responding to TMAO, DMA and MMA was prepared using Ps. aminovorans grown on TMAO. The difference in oxygen uptake was linearly related to the TMA concentration in the range of 5-26 microM. The minimum detectable level was 2.6 microM and the relative standard deviation was determined to be 14% for 16 repeated analyses. When operated and stored at 30 degrees C, the response of the system was stable for only 2 days. However, when the biosensor system was operated at 30 degrees C but stored overnight at 4 degrees C, the system was stable up to 20 days. The biosensor system was applicable for the determination of TMA in fish tissue extracts and the results compared well with those determined by HPLC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号