首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   38篇
  国内免费   1篇
  2021年   10篇
  2020年   7篇
  2019年   4篇
  2018年   11篇
  2017年   5篇
  2016年   7篇
  2015年   28篇
  2014年   25篇
  2013年   14篇
  2012年   25篇
  2011年   19篇
  2010年   20篇
  2009年   12篇
  2008年   15篇
  2007年   7篇
  2006年   12篇
  2005年   24篇
  2004年   9篇
  2003年   15篇
  2002年   10篇
  2001年   12篇
  2000年   6篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1977年   3篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1953年   3篇
  1947年   2篇
  1940年   2篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1924年   2篇
  1923年   3篇
  1920年   2篇
  1918年   3篇
  1910年   2篇
排序方式: 共有452条查询结果,搜索用时 663 毫秒
1.
用人肺鳞癌细胞LTEP-78细胞系免疫Blab/c小鼠获得3株抗人肺癌细胞的单克隆抗体杂交瘤系。其中BLTI-01株经六次克隆化培养,体外传代8个月以上。BLTI-01与白细胞抗原及血型抗原基本上无交叉反应;与骨髓细胞无交叉反应;与癌胚抗原和胎甲球蛋白不相关;与肺鳞癌、肺腺癌细胞系及部分其它肿瘤细胞呈阳性反应。  相似文献   
2.
Summary A prospective randomized trial compared the administration of intrapleural plus intravenous Corynebacterium parvum (C. parvum) versus placebo in patients with resected Stage I and Stage II non-small cell bronchogenic carcinoma. Treatment consisted of 7 mg C. parvum injected into the pleural space and 7 mg C. parvum intravenously once between days 6 and 12 postoperatively and 7 mg intravenously every 3rd month during the 1st year. Intrapleural administration of 35 cc of saline served as the placebo and the flush after intrapleural C. parvum.Of the 303 patients entered into this study, 286 were evaluable, with an average follow-up time of 3.5 years. More complications, especially fever, were observed in patients receiving C. parvum. A fever greater than 38 °C was observed in 9% of the patients assigned to placebo and 76% of the patients assigned to C. parvum. There was no significant difference between the treatments with respect to disease-free interval or survival.M. Kaufmann, J. Stjernswärd**, A. Zimmermann (Ludwig Institute for Cancer Research, Bern Branch); K. Stanley**, M. Isley, M. Zelen (Frontier Science & Tech. Research Foundation, Brookline, MA, USA); C. Mouritzen, P. Paulsen, U. Henriques (Dept. of Thoracic and Cardiovascular Surgery and Institute of Pathology, Kommunehospital, Aarhus, Denmark); N. Konietzko, W. Maassen, W. Hartung, W. Wierich (Ruhrland Clinic, Essen-Heidhausen, and Pathology Institute, Ruhr-University, Bochum, FRG); P. Oehl (Innere Klinik und Poliklinik Tumorforschung, Essen, FRG); J. Vogt-Moykopf, H. Toomes, W. Hofmann (Rohrbach Hospital, Clinic for Thoracic Medicine and Pathology Institute, Heidelberg, FRG); F. Krause, R. Rios, R. Spanel (Klinik Löwenstein, Löwenstein, and Pathology Institute, Ulm, FRG); J. Orel, B. Hrabar, D. Ferluga, T. Rott (University Medical Center, Thoracic Surgery and Pathology, Ljubljana, Yugoslavia); H. A. Rostad, J. R. Vale, P. Lexow (Rikshospital, Oslo, Norway); S. Hagen, S. Birkeland (Ulleval Hospital, Oslo, Norway); T. Harbitz, R. Nissen-Meyer (Aker Hospital, Oslo, Norway); E. Aspevik, H. Engedal, A. Mykin (Haukeland Hospital, Bergen, Norway); V. O. Björk, L. Rodriguez, K. Böök, J. Willems (Karolinska Sjukhuset, Thoracic Surgical Clinic and Pathology Department, Stockholm, Sweden); E. Grädel, J. Hasse, P. Dalquen (Kantonsspital, Dept of Surgery, Div. of Cardiac & Thoracic Surgery & Pathology Institute, Basel, Switzerland); L. Eckmann, K. Hänni, K. Zimmermann (Tiefenauspital Surg. Clinic, Univ. of Bern, Switzerland); B. Nachbur, H. U. Würsten, H. Cottier, A. Zimmermann (Inselspital Dept. of Thoracic and Cardiovascular Surg. and Pathology Institute, Bern, Switzerland); W. Maurer, M. Kaufmann (Bürgerspital, Surgical Department, Solothurn, Switzerland); H. Denck, E. Zwintz, St. Wuketich (Krankenhaus der Stadt Wien-Lainz, I. Chir. Dept., and Path. Inst., Vienna, Austria); N. Pridun, H. Hackl (Pulmonologisches Zentrum der Stadt Wien, and Path. Inst., Vienna, Austria); E. Moritz, W. Schlick, H. Holzner (II. Chir. University Clinic and Path. Inst., Vienna, Austria); K. Karrer (Institute for Cancer Research, Vienna, Austria); R. G. Crispen (ITR-Biomedical Research, University of Illinois, Chicago, USA); D. S. Freestone, R. Bomford, M. T. Scott, T. Priestman, L. Toy (The Wellcome Research Laboratories, Beckenham, England)** Present address: Cancer Unit, World Health Organization, Geneva, Switzerland Offprint requests to: K. Stanley, Ludwig Institute for Cancer Research, Inselspital, CH-3010 Bern, SwitzerlandLudwig Lung Cancer Study Group:  相似文献   
3.
4.
Summary The possibility of giving C. parvum intrapleurally (i.p.) was investigated. C. parvum was given post-operatively either i.p. only or i.p. and intravenously (i.v.) simultaneously. The dose varied from 0.1–10 mg i.p. All patients had been operated for a bronchial carcinoma. Results: (1) Subjective complaints of either dyspnoea, thoracic pain, chills or nausea occured in 31 of 63 patients. No clear dose relation was found. A feeling of discomfort and fever could occur for another 3–4 days after the above more acute symptoms had disappeared. (2) Increased fever (0.5° C) occurred in 71% of the patients injected i.p. only. (3) No anaphylactic reaction was observed. (4) Increased total white blood cell counts (<20%) occurred in 38 patients. The WBC increase was mainly due to higher number of neutrocytes and granulocytes. Total lymphocyte, monocyte, eosinophilic, and basophilic granulocytes values per mm3 circulating blood remained unchanged, except at the dose of 7 mg C. parvum i.p. when monocyte values were increased significantly from 576±247 to 1100±578/mm3. (5) Moderate to severe effusions were observed radiologically in three patients after C. parvum intrapleurally.The study group is: M. Kaufmann, J. Stjernswärd (Ludwig Institut for Cancer Research, Lausanne Branch, Switzerland), M. Zelen, K. Stanley (Frontier Science and Technology Research Foundation, Inc. Amherst, New York, USA), D. S. Freestone, R. Bomford, M. T. Scott, T. Priestman (The Wellcome Research Laboratory, Beckenham, England), C. Mouritzen, G. Ahlbom (Dept. of Thoracic and Cardiovascular Surgery, Aarhus Kommunehospital, Aarhus, Denmark), N. Konietzko, D. Greschuchna (Ruhrland Klinic, Essen-Haidhausen, Germany), P. Hilgard (Innere Klinik und Poliklinik [Tumorforschung] Essen, Germany), J. Vogt-Moykopf, D. Zeidler, H. Toomes (Thoraxchirurgische Spezial-Klinik, Heidelberg-Rohrbach, Germany), F. Krause, R. Rios (Thoraxchirurgische Abt., Fachkrankenhaus für Lungen- und Bronchialerkrankungen, Löwenstein, Germany), J. Orel, M. Benedik, B. Hrabar (Clinical Center, Dept. of Thoracic Surgery, Ljubljana, Yugoslavia), S. Plesnicar (The Institute of Oncology, Ljubljana, Yugoslavia), H. A. Rostad, J. R. Vale (Rikshospital, Oslo, Norway), S. Hagen, S. Birkeland, (Ulleval Hospital, Oslo, Norway), T. Harbitz, R. Nissen-Meyer (Aker Hospital, Oslo, Norway), L. Rodriguez, V. O. Björk, K. Böök (Karolinska Sjukhuset, Thoracic Clinic, Stockholm, Sweden), E. Gradel, J. Hasse, P. Holbro (Kantonsspital, Thoraxchirurgische Klinik, Basel, Switzerland), L. Eckmann (Tiefenauspital, Chir. Univ.-Klinik, Bern, Switzerland), B. Nachbur, T. Liechti (Inselspital, Dept. of Thoracic and Cardiovascular Surgery, Bern, Switzerland), H. Cottier (Inst. of Pathology, Inselspital, Bern, Switzerland), W. Maurer, M. Kaufmann, P. Froelicher (Bürgerspital, Surgical Dept., Solothurn, Switzerland), H. Denck, N. Pridun (Krankenhaus der Stadt Wien-Lainz, Chir. Abt., Vienna, Austria), K. Karrer (Institute for Cancer Research, University of Vienna, Austria) Reprint requests should be addressed to any of the members listed above, or to the Ludwig Lung Cancer Trial, Operation Office, LICR, CH-1066 Epalinges, Switzerland. (For Current Contents, etc., please use above address)  相似文献   
5.
Megacrania tsudai, a peripherally distributed member of Megacrania, requires conservation in Taiwan; it has limited distribution in Taiwan and its eastern offshore islands. It feeds on screw pines (Pandanus odoratissimus) in nature and has demonstrated a specific defensive mechanism involving actinidine secretion from the prothoracic gland. However, details of its distribution area, life cycle and developmental phenology remain largely unknown. In this study, a field survey and review of published works revealed M. tsudai distribution in coastal zones and along river shores near estuaries. At room temperature, the egg period was 128 days. The development of the first to sixth instars required 17, 26, 27, 26, 34 and 43 days, respectively, on average; and a generation cycle required approximately 204 days. The phenology of the mesonotal granules was recorded. Moreover, genetic analysis of the mitochondrial cytochrome oxidase I (COI), 16S ribosomal DNA (16S rDNA) and the nuclear ribosomal spacer indicated the occurrence of genetic drift. Therefore, the rearing procedures proposed in this study for the primary and last instars of M. tsudai can facilitate its conservation. Megacrania tsudai was previously recorded as parthenogenetic; however, two male individuals were fostered unexpectedly. The male body length was 91 mm, which is shorter than the female length (120 mm). During mating, the male climbs onto the female's back and protrudes its genitalia downward. Geographical parthenogenesis is likely the reproductive strategy among peripheral M. tsudai; however, the rarely found M. tsudai male could be an intermediate link of reproductive strategy in the transition from tychoparthenogenesis to parthenogenesis.  相似文献   
6.
Mycopathologia - Candida albicans has been reported globally as the most widespread pathogenic species contributing candidiasis from superficial to systemic infections in immunocompromised...  相似文献   
7.
PurposeTP53, encoding the protein p53, is among the most frequently mutated genes in all cancers. A high frequency of 60 – 90% mutations is seen in esophageal squamous cell carcinoma (ESCC) patients. Certain p53 mutants show gain-of-function (GoF) oncogenic features unrelated to its wild type functions.MethodsThis study functionally characterized a panel of p53 mutants in individual ESCC cell lines and assayed for GoF oncogenic properties.ResultsThe ESCC cell line with endogenous p53R248Q expression showed suppressed tumor growth in an immunocompromised mouse model and suppressed colony growth in in vitro three-dimensional culture, when depleted of the endogenous p53 protein expression. This suppression is accompanied by suppressed cell cycle progression, along with reduced integrin expression and decreased focal adhesion kinase and extracellular-regulated protein kinase signaling and can be compensated by expression of a constitutively active mitogen-activated protein. P53R248Q enhances cell proliferation upon glutamine deprivation, as compared to other non-GoF mutants.ConclusionsIn summary, study of the functional contributions of endogenous p53 mutants identified a novel GoF mechanism through which a specific p53 mutant exerts oncogenic features and contributes to ESCC tumorigenesis.  相似文献   
8.
Hepatocellular carcinoma (HCC) is a difficult to treat cancer characterized by poor tumor immunity with only one approved systemic drug, sorafenib. If novel combination treatments are to be developed with immunological agents, the effects of sorafenib on tumor immunity are important to understand. In this study, we investigate the impact of sorafenib on the CD4+CD25? effector T cells (Teff) and CD4+CD25+ regulatory T cells (Tregs) from patients with HCC. We isolated Teff and Treg from peripheral mononuclear cells of HCC patients to determine immune reactivity by thymidine incorporation, ELISA and flow cytometry. Teff cultured alone or with Treg were supplemented with different concentrations of sorafenib. The effects of sorafenib on Teff responses were dose-dependent. Pharmacologic doses of sorafenib decreased Teff activation by down regulating CD25 surface expression. In contrast, sub-pharmacologic concentrations of sorafenib resulted in Teff activation. These low doses of sorafenib in the Teff cultures led to a significant increase in Teff proliferation, IL2 secretion and up-regulation of CD25 expression on the cell surface. In addition, low doses of sorafenib in the suppression Teff/Treg cocultures restored Teff responses by eliminating Treg suppression. The loss of Treg suppressive function correlated with an increase in IL2 and IL6 secretion. Our findings show that sub-pharmacologic doses of sorafenib impact subsets of T cells differently, selectively increasing Teff activation while blocking Treg function. In conclusion, this study describes novel immune activating properties of low doses of sorafenib by promoting immune responsiveness in patients with HCC.  相似文献   
9.
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.  相似文献   
10.
Neuromuscular electrical stimulation (NMES) is used for preventing muscle atrophy and improving muscle strength in patients and healthy people. However, the current intensity of NMES is usually set at a level that causes the stimulated muscles to contract. This typically causes pain. Quantifying the instantaneous changes in muscle microcirculation and metabolism during NMES before muscle contraction occurs is crucial, because it enables the current intensity to be optimally tuned, thereby reducing the NMES‐induced muscle pain and fatigue. We applied near‐infrared spectroscopy (NIRS) to measure instantaneous tissue oxygenation and deoxygenation changes in 43 healthy young adults during NMES at 10, 15, 20, 25, 30, and 35 mA. Having been stabilized at the NIRS signal baseline, the tissue oxygenation and total hemoglobin concentration increased immediately after stimulation in a dose‐dependent manner (P < 0.05) until stimulation was stopped at the level causing muscle contraction without pain. Tissue deoxygenation appeared relatively unchanged during NMES. We conclude that NIRS can be used to determine the optimal NMES current intensity by monitoring oxygenation changes.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号