首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2005年   3篇
  2003年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有15条查询结果,搜索用时 62 毫秒
1.
Effects of dietary copper on human autonomic cardiovascular function   总被引:1,自引:0,他引:1  
Heart rate and blood pressure responses during supine rest, orthostasis, and sustained handgrip exercise at 30% maximal voluntary contraction were determined in eight healthy women aged 18-36 years who consumed diets varying in copper and ascorbic acid content. Copper retention and plasma copper concentration were not affected by diet. Enzymatic, but not immunoreactive, ceruloplasmin was lower (p less than 0.05) after the low copper and high ascorbic acid diet periods. Diet had no effect on resting supine heart rates, orthostatic responses in heart rate and blood pressure, or standing resting blood pressure. Systolic and diastolic blood pressures were increased significantly (p less than 0.05) during the handgrip test at the end of the low copper and ascorbic acid supplementation periods. Also, the ratio of enzymatic to immunoreactive ceruloplasmin decreased significantly during these dietary treatments. The mean arterial blood pressure at the end of the handgrip test was negatively (p less than 0.0004) correlated with the ceruloplasmin ratios. These findings indicate a functional alteration in human blood pressure regulation during mild copper depletion.  相似文献   
2.
The in vivo effects of gavage administration of the synthetic, functional biomimetic cation [Cr3O(O2CCH2CH3)6(H2O)3]+ to healthy and type 2 diabetic model rats are described. After 24 weeks of treatment (0–1,000 g Cr/kg body mass) of healthy Sprague Dawley rats, the cation results in a lowering (P<0.05) of fasting blood plasma low-density lipoprotein (LDL) cholesterol, total cholesterol, triglycerides, and insulin levels and of 2-h plasma insulin and glucose concentrations after a glucose challenge. Zucker obese rats (a model of the early stages of type 2 diabetes) and Zucker diabetic fatty rats (a model for type 2 diabetes) after supplementation (1,000 g Cr/kg) have lower fasting plasma total, high-density lipoprotein, and LDL cholesterol, triglycerides, glycated hemoglobin, and insulin levels and lower 2-h plasma insulin levels in glucose tolerance tests. The lowering of plasma insulin concentrations with little effect on glucose concentrations suggests that the supplement increases insulin sensitivity. The cation after 12 and 22 or 24 weeks of administration lowers (P<0.05) fasting plasma glycated hemoglobin levels in the Zucker diabetic and Zucker obese rats, respectively, and thus can improve the glucose status of the diabetic models. The effects cannot be attributed to the propionate ligand.Supplementary material is available for this article at .An erratum to this article can be found at  相似文献   
3.
Several sweat mineral element concentrations decline with serial sampling. Possible causes include reduced dermal mineral concentrations or flushing of surface contamination. The purpose of this study was to simultaneously sample mineral concentrations in transdermal fluid (TDF), sweat, and serum during extended exercise-heat stress to determine if these compartments show the same serial changes during repeat sampling. Sixteen heat-acclimated individuals walked on a treadmill (1.56 m/s, 3.0% grade) in a 35°C, 20% relative humidity (RH), 1 m/s wind environment 50 min each hour for 3 h. Mineral concentrations of Ca, Cu, Fe, K, Mg, Na, and Zn were measured each hour from serum, sweat from upper back (sweat pouch) and arm (bag), and TDF from the upper back. Sites were meticulously cleaned to minimize surface contamination. Mineral concentrations were determined by spectrometry. TDF remained stable over time, with exception of a modest increase in TDF [Fe] (15%) and decrease in TDF [Zn] (-18%). Likewise, serum and pouch sweat samples were stable over time. In contrast, the initial arm bag sweat mineral concentrations were greater than those in the sweat pouch, and [Ca], [Cu], [Mg], and [Zn] declined 26-76% from initial to the subsequent samples, becoming similar to sweat pouch. Nominal TDF mineral shifts do not affect sweat mineral concentrations. Arm bag sweat mineral concentrations are initially elevated due to skin surface contaminants that are not removed despite meticulous cleaning (e.g., under fingernails, on arm hair), then decrease with extended sweating and approach those measured from the scapular region.  相似文献   
4.
A practical and reliable semiautomated method for analysis of urinary 3-methylhistidine (3-MH) was designed combining the isolation of 3-MH by ion-exchange chromatography with the color reaction given by ninhydrin-orthopthalaldehyde (ninhydrin-OPT) reagent after alkalinization. 2 ml of urine were passed through disposable columns packed with an ion-exchange resin (Dowex 50-X8, 200–400 mesh) and the acidic and neutral amino acids were eluted with 10 ml of 0.2 M pyridine solution. Then, the 3-MH was quantitatively eluted and separated from histidine with a volume of 9 ml of a 1.5 M pyridine solution. Standard Autoanalyzer equipment was used for the automation of spectrophotometry. The method permits the analysis of 40 samples in duplicate per day. The 3-MH color reaction was linear for concentrations from 0.015 to 0.24 μ mol/ml. The mean recoveries of 3-MH from standards and urine were 98.6 ± 1.3 and 99.0 ± 1.3%, respectively. Duplicate determinations of urine samples showed a variation coefficient of 1.88%. An excellent agreement was obtained between urine samples analyzed by the present method and by an amino acid analyzer. The need for the elimanation of the interfering amino acids was clearly demonstrated.  相似文献   
5.
This study was conducted to validate the relationship between bioelectrical conductance (ht2/R) and densitometrically determined fat-free mass, and to compare the prediction errors of body fatness derived from the tetrapolar impedance method and skinfold thicknesses, relative to hydrodensitometry. One-hundred and fourteen male and female subjects, aged 18-50 yr, with a wide range of fat-free mass (34-96 kg) and percent body fat (4-41%), participated. For males, densitometrically determined fat-free mass was correlated highly (r = 0.979), with fat-free mass predicted from tetrapolar conductance measures using an equation developed for males in a previous study. For females, the correlation between measured fat-free mass and values predicted from the combined (previous and present male data) equation for men also was strong (r = 0.954). The regression coefficients in the male and female regression equations were not significantly different. Relative to hydrodensitometry, the impedance method had a lower predictive error or standard error of the estimates of estimating body fatness than did a standard anthropometric technique (2.7 vs. 3.9%). Therefore this study establishes the validity and reliability of the tetrapolar impedance method for use in assessment of body composition in healthy humans.  相似文献   
6.
The Caco-2 cell line was used as a model to determine if the type of fatty acid, unsaturated versus saturated, differentially altered the uptake and transport of iron in the human intestine and if the changes were the result of alterations in monolayer integrity and paracellular transport. Cells were cultured in either a lower-iron or normal-iron medium and incubated with a bovine serum albumin control, linoleate, oleate, palmatate, or stearate. Oleate, palmatate, and stearate enhanced (p<0.05) iron uptake in cells grown in lower iron. The fatty acid effect on iron uptake by cells grown in normal iron was not as pronounced. Iron transport was not affected (p>0.05) by an interaction between the type of medium (iron concentration) and the type of fatty acid. Iron transport was enhanced (p<0.05) with palmatate and stearate. Various indicators of monolayer integrity and paracellular transport were also affected by the fatty acids, thus impacting iron uptake and transport. These results indicate that oleate, palmatate, and stearic can enhance iron uptake and transport; however, this enhancement may be the result of alterations in the integrity of the intestine. A portion of the data was presented at Experimental Biology 96 as a poster session. E. A. Droke, L. K. Johnson, and H. C. Lukaski. Fatty acids affect iron uptake and transport in Caco-2 cells. FASEB J. 10, 1431 (1996).  相似文献   
7.
Objective: High‐fat and marginally copper‐deficient diets impair heart function, leading to cardiac hypertrophy, increased lipid droplet volume, and compromised contractile function, resembling lipotoxic cardiac dysfunction. However, the combined effect of the two on cardiac function is unknown. This study was designed to examine the interaction between high‐fat and marginally copper‐deficient diets on cardiomyocyte contractile function. Research Methods and Procedures: Weanling male rats were fed diets incorporating a low‐ or high‐fat diet (10% or 45% of kcal from fat, respectively) with adequate (6 mg/kg) or marginally deficient (1.5 mg/kg) copper content for 12 weeks. Contractile function was determined with an IonOptix system including peak shortening (PS), time‐to‐PS, time‐to‐90% relengthening, maximal velocity of shortening/relengthening, and intracellular Ca2+ ([Ca2+]I) rise and decay. Results: Neither dietary treatment affected blood pressure or glucose levels, although the high‐fat diet elicited obesity and glucose intolerance. Both diets depressed PS, maximal velocity of shortening/relengthening, and intracellular Ca2+ ([Ca2+]I) rise and prolonged time‐to‐90% relengthening and Ca2+ decay without an additive effect between the two. Ca2+ sensitivity, apoptosis, lipid peroxidation, nitrosative damage, tissue ceramide, and triglyceride levels were unaffected by either diet or in combination. Phospholamban (PLB) but not sarco(endo)plasmic reticulum Ca2+‐ATPase was increased by both diets. Endothelial NO synthase was depressed with concurrent treatments. The electron transport chain was unaffected, although mitochondrial aconitase activity was inhibited by the high‐fat diet. Discussion: These data suggest that high‐fat and marginally copper deficient diets impaired cardiomyocyte contractile function and [Ca2+]i homeostasis, possibly through a similar mechanism, without obvious lipotoxicity, nitrosative damage, and apoptosis.  相似文献   
8.
9.

Purpose

The present study determined the association between body fluid variation and the development of acute mountain sickness (AMS) in adults.

Methods

Forty-three healthy participants (26 males and 17 females, age: 26±6 yr, height: 174±9 cm, weight: 68±12 kg) were passively exposed at a FiO2 of 12.6% (simulated altitude hypoxia of 4500 m, PiO2 = 83.9 mmHg) for 12-h. AMS severity was assessed using the Lake Louise Score (LLS). Food and drink intakes were consumed ad libitum and measured; all urine was collected. Before and after the 12-h exposure, body weight and plasma osmolality were measured and whole-body bioimpedance analysis was performed.

Results

The overall AMS incidence was 43% (38% males, 50% females). Participants who developed AMS showed lower fluid losses (3.0±0.9 vs. 4.5±2.0 ml/kg/h, p = 0.002), a higher fluid retention (1.9±1.5 vs. 0.6±0.8 ml/kg/h, p = 0.022), greater plasma osmolality decreases (−7±7 vs. −2±5 mOsm/kg, p = 0.028) and a larger plasma volume expansion (11±10 vs. 1±15%, p = 0.041) compared to participants not developing AMS. Net water balance (fluid intake – fluid loss) and the amount of fluid loss were strong predictors whether getting sick or not (Nagelkerkes r2 = 0.532). The LLS score was related to net water balance (r = 0.358, p = 0.018), changes in plasma osmolality (r = −0.325, p = 0.033) and sodium concentration (r = −0.305, p = 0.047). Changes in the impedance vector length were related to weight changes (r = −0.550, p<0.001), fluid intake (r = −0.533, p<0.001) and net water balance (r = −0.590, p<0.001).

Conclusions

Participants developing AMS within 12 hours showed a positive net water balance due to low fluid loss. Thus measures to avoid excess fluid retention are likely to reduce AMS symptoms.  相似文献   
10.

Purpose

Assessment of post-exercise changes in hydration with bioimpedance (BI) is complicated by physiological adaptations that affect resistance (R) and reactance (Xc) values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower.

Methods

Healthy males (n = 14, 24.1±1.7 yr; height (H): 182.4±5.6 cm, body mass: 72.3±6.3 kg) exercised for 1 hr at a self-rated intensity (15 BORG) in an environmental chamber (33°C and 50% relative humidity), then had a cold shower (15 min). Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again.

Results

Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05) with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001). Changes in Posm were negatively related to changes in body mass (r = −0.564, p = 0.036) and changes in Xc/H (r = −0.577, p = 0.041).

Conclusions

Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R) indicated greater Posm increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号