首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   9篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   9篇
  2013年   16篇
  2012年   13篇
  2011年   13篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   9篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
排序方式: 共有157条查询结果,搜索用时 62 毫秒
1.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   
2.
Human ornithine δ-aminotransferase (hOAT) (EC 2.6.1.13) is a mitochondrial pyridoxal 5′-phosphate (PLP)-dependent aminotransferase whose deficit is associated with gyrate atrophy, a rare autosomal recessive disorder causing progressive blindness and chorioretinal degeneration. Here, both the apo- and holo-form of recombinant hOAT were characterized by means of spectroscopic, kinetic, chromatographic and computational techniques. The results indicate that apo and holo-hOAT (a) show a similar tertiary structure, even if apo displays a more pronounced exposure of hydrophobic patches, (b) exhibit a tetrameric structure with a tetramer-dimer equilibrium dissociation constant about fivefold higher for the apoform with respect to the holoform, and (c) have apparent Tm values of 46 and 67?°C, respectively. Moreover, unlike holo-hOAT, apo-hOAT is prone to unfolding and aggregation under physiological conditions. We also identified Arg217 as an important hot-spot at the dimer–dimer interface of hOAT and demonstrated that the artificial dimeric variant R217A exhibits spectroscopic properties, Tm values and catalytic features similar to those of the tetrameric species. This finding indicates that the catalytic unit of hOAT is the dimer. However, under physiological conditions the apo-tetramer is slightly less prone to unfolding and aggregation than the apo-dimer. The possible implications of the data for the intracellular stability and regulation of hOAT are discussed.  相似文献   
3.
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.  相似文献   
4.
5.
An experimental rodent model was used to demonstrate the viability of the coccoid form of Helicobacter pylori. Concentrated suspensions were prepared for the two different morphologies: at 2 days incubation for the bacillary forms and at 20 days incubation for the “dormant” forms. The strains used for incubation were two fresh isolates from humans with duodenal ulceration, and two collection strains. Five hundred microliters of culture (OD550 = 5 Mc Farland) of Helicobacter pylori with bacillary (2-5×109 CFU/ml) and coccoid (0 CFU/ml) morphology were inoculated intragastrically in BALB/c mice. The gastric mucosa of the mice was colonized by Helicobacter pylori with the administration of fresh bacillary and coccoid cultures and not with the established cultures. Helicobacter pylori was isolated at 1 week after inoculation with the administration of fresh bacillary cultures, while fresh coccoid Helicobacter pylori was recovered in mice stomachs after 2 weeks of inoculation. After colonization, histopathologic changes occurred after 1 month from inoculation; all colonized mice showed a systemic antibody response to Helicobacter pylori. These results support the thesis of the viability of coccoid Helicobacter pylori non-culturable in vitro and confirm that concentrated bacterial suspensions are able to colonize and to produce gastric alterations in this suitable animal model.  相似文献   
6.
7.
8.
The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′‐phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP‐binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT‐pyridoxamine 5′‐phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300‐ to 500‐fold decrease in both the rate constant of L‐alanine half‐transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc.  相似文献   
9.
Multiple genome screens have been performed to identify regions in linkage or association with Multiple Sclerosis (MS, OMIM 126200), but little overlap has been found among them. This may be, in part, due to a low statistical power to detect small genetic effects and to genetic heterogeneity within and among the studied populations. Motivated by these considerations, we studied a very special population, namely that of Nuoro, Sardinia, Italy. This is an isolated, old, and genetically homogeneous population with high prevalence of MS. Our study sample includes both nuclear families and unrelated cases and controls. A multi-stage study design was adopted. In the first stage, microsatellites were typed in the 17q11.2 region, previously independently found to be in linkage with MS. One significant association was found at microsatellite D17S798. Next, a bioinformatic screening of the region surrounding this marker highlighted an interesting candidate MS susceptibility gene: the Amiloride-sensitive Cation Channel Neuronal 1 (ACCN1) gene. In the second stage of the study, we resequenced the exons and the 3' untranslated (UTR) region of ACCN1, and investigated the MS association of Single Nucleotide Polymorphisms (SNPs) identified in that region. For this purpose, we developed a method of analysis where complete, phase-solved, posterior-weighted haplotype assignments are imputed for each study individual from incomplete, multi-locus, genotyping data. The imputed assignments provide an input to a number of proposed procedures for testing association at a microsatellite level or of a sequence of SNPs. These include a Mantel-Haenszel type test based on expected frequencies of pseudocase/pseudocontrol haplotypes, as well as permutation based tests, including a combination of permutation and weighted logistic regression analysis. Application of these methods allowed us to find a significant association between MS and the SNP rs28936 located in the 3' UTR segment of ACCN1 with p = 0.0004 (p = 0.002, after adjusting for multiple testing). This result is in tune with several recent experimental findings which suggest that ACCN1 may play an important role in the pathogenesis of MS.  相似文献   
10.
PTX3 is a prototypic long pentraxin that plays a non-redundant role in innate immunity against selected pathogens and in female fertility. Here, we report that the infertility of Ptx3(-/-) mice is associated with severe abnormalities of the cumulus oophorus and failure of in vivo, but not in vitro, oocyte fertilization. PTX3 is produced by mouse cumulus cells during cumulus expansion and localizes in the matrix. PTX3 is expressed in the human cumulus oophorus as well. Cumuli from Ptx3(-/-) mice synthesize normal amounts of hyaluronan (HA), but are unable to organize it in a stable matrix. Exogenous PTX3 restores a normal cumulus phenotype. Incorporation in the matrix of inter-alpha-trypsin inhibitor is normal in Ptx3(-/-) cumuli. PTX3 does not interact directly with HA, but it binds the cumulus matrix hyaladherin tumor necrosis factor alpha-induced protein 6 (TNFAIP6, also known as TSG6) and thereby may form multimolecular complexes that can cross-link HA chains. Thus, PTX3 is a structural constituent of the cumulus oophorus extracellular matrix essential for female fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号