首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16786篇
  免费   1550篇
  国内免费   1739篇
  2024年   28篇
  2023年   198篇
  2022年   264篇
  2021年   770篇
  2020年   583篇
  2019年   706篇
  2018年   647篇
  2017年   484篇
  2016年   708篇
  2015年   1039篇
  2014年   1281篇
  2013年   1261篇
  2012年   1597篇
  2011年   1410篇
  2010年   951篇
  2009年   853篇
  2008年   980篇
  2007年   900篇
  2006年   720篇
  2005年   663篇
  2004年   519篇
  2003年   483篇
  2002年   427篇
  2001年   304篇
  2000年   292篇
  1999年   264篇
  1998年   201篇
  1997年   145篇
  1996年   141篇
  1995年   127篇
  1994年   122篇
  1993年   85篇
  1992年   110篇
  1991年   86篇
  1990年   72篇
  1989年   74篇
  1988年   69篇
  1987年   68篇
  1986年   44篇
  1985年   56篇
  1984年   43篇
  1983年   32篇
  1982年   31篇
  1981年   21篇
  1980年   16篇
  1979年   21篇
  1977年   17篇
  1974年   16篇
  1972年   16篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 749 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
W C Wong  S H Tan  T Y Yick  E A Ling 《Acta anatomica》1990,138(4):318-326
The ultrastructure of the interstitial cells of Cajal (ICC) in the oesophagus of the monkey resembled that described in the oesophagus of other mammalian species but differed in their paucity and almost lack of smooth endoplasmic reticulum, caveolae and filaments. The plasmalemma of the ICC was in close contact (20- to 30-nm gaps) with that of smooth muscle cells. This may occasionally take the form of a desmosome, but gap junctions have not been observed. Vesiculated axon profiles, containing large granular or agranular vesicles were in close contact (20- to 30-nm gaps) with the plasmalemma of ICC. In a few vesiculated profiles a presynaptic density could be recognized. The intercalation of the ICC between the vesiculated axon profiles and the smooth muscle cells suggest a role in oesophageal motility. Between 3 and 21 days following bilateral vagotomy some ICC showed regressive changes such as increased electron density and shrinkage of the cytoplasm, crowding of the organelles and dissolution of the nuclear chromatin material. Axon profiles in the vicinity of the affected ICC contained glycogen granules suggesting injury. In late stages, the number of ICC and smooth muscle contacts was reduced. The results suggest that the vagus nerves exert a trophic influence on the ICC and that the intercellular relationships between ICC and smooth muscle cells possess a degree of plasticity. It is tentatively suggested that these vagal effects may be mediated via the oesophageal myenteric ganglia.  相似文献   
3.
4.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
5.
6.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   
7.
8.
Plasma concentrations of adrenaline and noradrenaline were measured at rest from cannulated fish and following net capture. Adrenaline and noradrenaline concentrations in capture-stressed fish averaged 36,740 pmol l-1 and 38,860 pmol l-1 respectively, whereas resting values were less than 200 pmol l-1 for both amines. Erythrocyte swelling and raised blood lactate were evident in stressed fish. In vitro effects of 5 mmol l-1 adrenaline on erythrocyte suspensions suggested that the catecholamine had a direct effect on erythrocyte volume. The significance of these results is discussed in relation to the oxygen transport properties of the blood.  相似文献   
9.
10.
Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号