首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  1991年   1篇
排序方式: 共有36条查询结果,搜索用时 500 毫秒
1.
Bioprocess and Biosystems Engineering - In this work, a fed-batch approach was adopted to overcome propionic acid lipase inactivation effects in the benzyl propionate direct esterification mediated...  相似文献   
2.
3.
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.  相似文献   
4.
5.
The proposal of the present study was to select and carry out the molecular characterization of strains of Xanthomonas sp. in order to correlate with gum production and determine possible genetic alterations during the study. The gums produced were also evaluated rheologically. Ten strains of Xanthomonas were used in the screening and the best ones in terms of productivity were Xanthomonas campestris pv. mangiferaeindicae 1230 (8.93 g/L), X. campestris pv. campestris 254 (9.49 g/L) and X. campestris pv. campestris 1078 (9.67 g/L). The gum produced by X. campestris pv. mangiferaeindicae presented the best apparent viscosity. The results for the profiles of the bands produced by RAPD showed considerable genetic variability amongst the evaluated strains, making not possible to neither group the strains according to pathovar or species, nor correlate the band profile with the productivity obtained. According to the RAPD analysis, no detectable mutations occurred in these bacteria during the study.  相似文献   
6.
The Allee effect consists of a positive correlation between very small population size and fitness. Offering a new view point on the weak and strong demographic Allee effect, we propose to combine them with the Richards growth model. In particular, a peculiar manifestation of the Allee effect is analytically predicted and still not validated by experiments. Model validation with ecological data is presented for some special situations.  相似文献   
7.

Objective

Early lifestyle interventions in children with obesity decrease risk of obesity and metabolic disorders during adulthood. This study aimed to identify metabolic signatures associated with lifestyle intervention in urine samples from prepubertal children with obesity.

Methods

Thirty‐four prepubertal children with obesity were studied before and after a 6‐month lifestyle intervention program, and anthropometric, metabolic, and nutritional variables were collected. A nuclear magnetic resonance approach was applied to obtain the metabolomic profile from urine samples. Partial least squares‐discriminant analysis (PLS‐DA) was used to achieve group classification and variable importance on projection (VIP) for biomarker selection.

Results

The intervention reduced caloric intake by 10% (P < 0.05) and BMI standard deviation score by 0.47 SD (P < 0.001). PLS‐DA identified trimethylamine N‐oxide (TMAO, VIP = 2.21) as the metabolite with the highest discrimination properties between groups. Urine TMAO levels were reduced after the intervention (P < 0.05). TMAO is a biomarker of cardiovascular disease risk and is a product of gut microbiota‐dependent metabolism of certain dietary compounds, including choline. Notably, changes in TMAO levels after the intervention did not correlate to differences in choline intake but were inversely associated with fiber intake (P < 0.05).

Conclusions

These results indicate that lifestyle intervention decreases TMAO levels in children with obesity.
  相似文献   
8.
PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts-pigs, humans, or birds-remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs.  相似文献   
9.
The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.Of the 16 known hemagglutinin (HA) subtypes, only 3 (H1, H2, and H3) have established stable lineages in humans. The H2N2 virus caused a pandemic in 1957 and circulated in the human population until reassortment of the H2N2 virus with an avian H3 virus resulted in the H3N2 pandemic of 1968 (36). Since then, H2N2 viruses have been absent from the human population; however, the H2 subtype has been repeatedly isolated in wild-bird surveillance, and its HA has been found to be antigenically similar to the H2 pandemic virus HA (23, 25, 36). An H2 influenza virus containing human-like receptor specificity was recently isolated as an H2N3 avian-swine reassortant. This virus caused disease and was transmitted in swine and ferrets (24), indicating that this subtype continues to circulate and mutate and can cross the species barrier to mammals. The repeat introduction of a novel H1N1 pandemic this past year (12, 37) highlights the need to understand the mechanisms of introduction, adaptation, and transmission of avian H2N2 influenza viruses in terrestrial birds and potentially mammalian species.Our previous study built on reports that Japanese quail (Coturnix coturnix) play an important role as an intermediate host in the adaptation of avian influenza viruses to land-based birds (38). Japanese quail are typically more susceptible to aquatic influenza viruses than other terrestrial poultry. These viruses establish infection in the respiratory tract, and shedding occurs via aerosol (2, 19, 26, 34, 38, 43). Quail have been implicated in the transmission of avian influenza viruses, such as H5N1 and H9N2 viruses, which have crossed the species barrier to infect humans (9, 14, 15, 22, 28). The susceptibility of quail to multiple subtypes and their role in interspecies transmission led to their removal from live-bird markets in Hong Kong in 2000; however, they continue to be an integral part of live-bird markets throughout the world. Their role as potential intermediate hosts requires further study to identify important molecular markers in the adaptation via quail of avian viruses to other terrestrial poultry, and possibly to humans.The molecular determinants of the host range and pathogenesis of influenza A viruses have been linked to multiple regions of the 11 genes, most notably those encoding the viral surface glycoproteins (HA and neuraminidase [NA]) and the polymerase proteins (PB2, PB1, PA, and NP). However, a comprehensive map of the various determinants remains incomplete, and the molecular mechanisms involved are unclear. In our previous report, we demonstrated that through the use of quail as an intermediate host, a mallard H2N2 influenza virus, A/mallard/Potsdam/178-4/83 (mall/178), which in its wild-type (wt) form was unable to be transmitted in quail or to establish an efficient infection in chickens, was able, in its adapted form (qa-mall/178), not only to be transmitted to sentinel quail but also to replicate to efficient levels in the chicken intestinal tract and to be transmitted to sentinel cagemates via the fecal-oral route. This adaptation was the result of six serial passages of lung homogenates in quail that led to six amino acid changes in four genes (38). Here we present data confirming the role that Japanese quail play in the transmission of this mall/178 H2N2 virus in land-based birds. Reverse genetics studies confirmed that the amino acid changes produced during the adaptation in quail were necessary for the infection of chickens with this virus and for its transmission in chickens. Further adaptation of the qa-mall/178 H2N2 virus in chickens, aimed at establishing replication in the respiratory tract, resulted in a deletion in the stalk region of the NA, which supported replication in the chicken trachea and lung. This 27-amino-acid deletion in the stalk region of the N2 NA is characteristic of the adaptation of aquatic influenza viruses to domestic poultry, particularly chickens (3, 5, 29). Our work indicates that through the use of quail as an intermediate host, this mallard H2N2 virus is able to further adapt within an additional terrestrial poultry species, potentially improving its chances of expanding its host range further.  相似文献   
10.
Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号