首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
A diatom Synedra acus subsp. radians (Kotz.) Skabitsch. has been studied by transmission electron microscopy. Examination of ultrathin sections demonstrated that silica dissolution in ammonium fluoride pH 5 under mild conditions leaves the key ultrastructural elements intact. The ultrastructure and arrangement of the cell organelles was studied during ontogeny. Silicalemma-surrounded silica deposition vesicles (SDVs) with maturating daughter valves and forming girdle bands have been identified. This method of SDV visualization offers considerable advantages over the standard approach without silica dissolution.  相似文献   
2.
3.
4.
葡萄糖及脂肪酸是胰岛β细胞的关键代谢底物,葡萄糖刺激胰岛β细胞分泌胰岛素是维持机体血糖稳态平衡的关键。胰岛素抵抗发生时,β细胞对能量代谢底物的选择失调,加速胰岛β细胞由代偿到胰岛β细胞失代偿的进程,是肥胖胰岛素抵抗最终发展为2型糖尿病的始动因素。核转录因子FoxO1属于Fox家族成员,在胰腺内广泛表达,在β细胞的代谢,发育,增殖过程中发挥着重要的调节作用。鉴于FoxO1在维持胰岛β细胞功能中的关键作用,现着重对FoxO1在胰岛β细胞代谢灵活性受损及失代偿过程发生中的作用调节进行阐述。为其作为调控胰岛β细胞功能的关键靶点提供参考。  相似文献   
5.
The diversity of chloroplast forms, and their number and cellular location, as well as pyrenoid structure, distinguishes diatoms from other groups of heterokont algae. The fine chloroplast structure is considered to be informative for taxonomic and phylogenetic studies of diatoms. Six species of diatoms belonging to different classes have been examined with transmission electron microscopy. New data on the chloroplast structure have been obtained. Characteristics of the pyrenoid ultrastructure of diatoms belonging to various phylogenetic clades have been defined more precisely. The results specify the ultrastructure of pyrenoids for different phylogenetic clades of diatoms and contribute to the previously obtained data.  相似文献   
6.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   
7.
Insight into the role of bacteria in degradation of diatoms is important for understanding the factors and components of silica turnover in aquatic ecosystems. Using microscopic methods, it has been shown that the degree of diatom preservation and the numbers of diatom-associated bacteria in the surface layer of bottom sediments decrease with depth; in the near-bottom water layer, the majority of bacteria are associated with diatom cells, being located either on the cell surface or within the cell. The structure of microbial community in the near-bottom water layer has been characterized by pyrosequencing of the 16S rRNA gene, which has revealed 149 208 unique sequences. According to the results of metagenomic analysis, the community is dominated by representatives of Proteobacteria (41.9%), Actinobacteria (16%); then follow Acidobacteria (6.9%), Cyanobacteria (5%), Bacteroidetes (4.7%), Firmicutes (2.8%), Nitrospira (1.6%), and Verrucomicrobia (1%); other phylotypes account for less than 1% each. For 18.7% of the sequences, taxonomic identification has been possible only to the Bacteria domain level. Many bacteria identified to the genus level have close relatives occurring in other aquatic ecosystems and soils. The metagenome of the bacterial community from the near-bottom water layer also contains 16S rRNA gene sequences found in previously isolated bacterial strains possessing hydrolytic enzyme activity. These data show that potential degraders of diatoms occur among the vast variety of microorganisms in the near-bottom water of Lake Baikal.  相似文献   
8.
A new subfamily LIP of the major intrinsic proteins   总被引:1,自引:0,他引:1  

Background

Proteins of the major intrinsic protein (MIP) family, or aquaporins, have been detected in almost all organisms. These proteins are important in cells and organisms because they allow for passive transmembrane transport of water and other small, uncharged polar molecules.

Results

We compared the predicted amino acid sequences of 20 MIPs from several algae species of the phylum Heterokontophyta (Kingdom Chromista) with the sequences of MIPs from other organisms. Multiple sequence alignments revealed motifs that were homologous to functionally important NPA motifs and the so-called ar/R-selective filter of glyceroporins and aquaporins. The MIP sequences of the studied chromists fell into several clusters that belonged to different groups of MIPs from a wide variety of organisms from different Kingdoms. Two of these proteins belong to Plasma membrane intrinsic proteins (PIPs), four of them belong to GlpF-like intrinsic proteins (GIPs), and one of them belongs to a specific MIPE subfamily from green algae. Three proteins belong to the unclassified MIPs, two of which are of bacterial origin. Eight of the studied MIPs contain an NPM-motif in place of the second conserved NPA-motif typical of the majority of MIPs. The MIPs of heterokonts within all detected clusters can differ from other MIPs in the same cluster regarding the structure of the ar/R-selective filter and other generally conserved motifs.

Conclusions

We proposed placing nine MIPs from heterokonts into a new group, which we have named the LIPs (large intrinsic proteins). The possible substrate specificities of the studied MIPs are discussed.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-173) contains supplementary material, which is available to authorized users.  相似文献   
9.
Many pigmented heterokonts are able to synthesize elements of their cell walls (the frustules) of dense biogenic silica. These include diatom algae, which occupy a significant place in the biosphere. The siliceous frustules of diatoms have species-specific patterns of surface structures between 10 and a few hundred nanometers. The present review considers possible mechanisms of uptake of silicic acid from the aquatic environment, its transport across the plasmalemma, and intracellular transport and deposition of silica inside the specialized Silica Deposition Vesicle (SDV) where elements of the new frustule are formed. It is proposed that a complex of silicic acid with positively charged proteins silaffins and polypropylamines remains a homogeneous solution during the intracellular transport to SDV, where biogenic silica precipitates. The high density of the deposited biogenic silica may be due to removal of water from the SDV by aquaporins followed by syneresis--a process during which pore water is expelled from the network of the contracting gel. The pattern of aquaporins in the silicalemma, the membrane embracing the SDV, can determine the pattern of species-specific siliceous nanostructures.  相似文献   
10.
The results of studies on the phytoplankton of Southern Baikal in 2004 show that siliceous stomatocysts (cysts) of chrysophyte algae make a significant contribution to this community. Their abundance reaches a peak of 46 800 cysts/L between August and October, when the concentration of biogenic elements is minimum. The D/C coefficient (the ratio of diatom cells to stomatocysts) varies during the year, reflecting the seasonal succession of phytoplankton and changes in the concentration of biogenic elements in the photic layer. Fifty morphotypes of the stomatocysts have been distinguished and divided into 25 groups by morphological characters. These groups differ in seasonal dynamics. The stomatocysts of group 5 (with spines of different lengths in the equatorial and posterior parts) dominate over other morphotypes and reach the highest concentration (13 600 cysts/L) in August. The data obtained in this study may provide an additional criterion for assessing the present-day state of Lake Baikal and for paleolimnological reconstructions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号