首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2000年   3篇
  1998年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.Pollen tube growth provides a unique model system for studying the role of exocytosis in cell morphogenesis. Pollen tubes are characterized by a highly rapid polarized unidirectional tip growth. Given the relative simplicity of their structure, fast growth rates, haploid genome content, and ability to grow under in vitro culture conditions, pollen tubes provide an extremely attractive system for studying cell morphogenesis. Furthermore, the growth characteristics of pollen tubes resemble those of root hairs, moss protonema, and fungal hyphae and to some extent can be paralleled to neurite growth (Chebli and Geitmann, 2007; Cheung and Wu, 2008; Guan et al., 2013; Hepler and Winship, 2015).It is well established that oscillating polarized exocytosis is fundamental for pollen tube development and determines growth rate (Bove et al., 2008; McKenna et al., 2009; Chebli et al., 2013). Exocytosis is required for the delivery of membrane and cell wall components to the growing tip. Yet, the exact location where exocytosis takes place is under debate. Ultrastructural studies showing the accumulation of vesicles at the tip suggested that exocytosis takes place at the tip (Lancelle et al., 1987; Lancelle and Hepler, 1992; Derksen et al., 1995), which was further supported by studies on the dynamics of cell wall thickness (Rojas et al., 2011), secretion of pectin methyl esterase (PME) and PME inhibitor, and staining of pectin by propidium iodide (PI; Röckel et al., 2008; Rounds et al., 2014). Conversely, based on colabeling with FM1-43 and FM4-64, it was concluded that exocytosis takes place in a subapical collar located in the transition zone between the tip and the shank, as well as at the shank, but not at the tip (Bove et al., 2008; Zonia and Munnik, 2008). In agreement, the pollen tube-specific syntaxin GFP-SYP124 was observed in the inverted cone, 10 to 25 μm away from the tip (Silva et al., 2010), and fluorescence recovery after photobleaching experiments with FM dyes also have indicated that exocytosis takes place at the subapical region (Bove et al., 2008; Moscatelli et al., 2012; Idilli et al., 2013). Yet, based on pollen tube reorientation experiments in a microfluidics device, it was concluded that growth takes place at the tip rather than at a subapical collar located in the transition zone between the apex and the shank (Sanati Nezhad et al., 2014). The tip-based growth is in agreement with exocytosis taking place at the tip. Presumably, part of the disagreement regarding the site of exocytosis resulted from the lack of intracellular markers for exocytosis (Cheung and Wu, 2008; Hepler and Winship, 2015), and as a result, the relationship between the FM dye-labeled inverted cone and exocytotic events during pollen tube growth is not fully understood.In many cell types, the process of secretory vesicles tethering and docking prior to fusion with the plasma membrane is initially mediated by an evolutionarily conserved tethering complex known as the exocyst. The exocyst is a heterooligomeric protein complex composed of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Studies originally based on budding yeast (Saccharomyces cerevisiae) have shown that the exocyst functions as an effector of Rab and Rho small GTPases that specifies the sites of vesicle docking and fusion at the plasma membrane in both space and time (Guo et al., 2001; Zhang et al., 2001). Support for the function of the exocyst in vesicle tethering was demonstrated recently by ectopic Sec3p-dependent vesicle recruitment to the mitochondria (Luo et al., 2014).Land plants contain all subunits of the exocyst complex, which were shown to form the functional complex (Elias et al., 2003; Cole et al., 2005; Synek et al., 2006; Hála et al., 2008). Studies in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) have implicated the exocyst in the regulation of pollen tube and root hair growth, seed coat deposition, response to pathogens, cytokinesis, and meristem and stigma function (Cole et al., 2005; Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010; Kulich et al., 2010; Pecenková et al., 2011; Safavian and Goring, 2013; Wu et al., 2013; Safavian et al., 2015; Zhang et al., 2016). The growth arrest of pollen tubes in sec8, sec6, sec15a, and sec5a/sec5b single and double mutants (Cole et al., 2005; Hála et al., 2008) or following treatment with the EXO70 inhibitor ENDOSIDIN2 (Zhang et al., 2016), and of root hairs in maize root hairless1 (rth1) SEC3 mutant (Wen et al., 2005), the inhibition of seed coat deposition in the sec8 and exo70A1 mutants (Kulich et al., 2010), and stigmatic papillae function in exo70A1 mutant plants (Safavian and Goring, 2013; Safavian et al., 2015) have implicated the exocyst in polarized exocytosis in plants. Given their function, it was likely that exocyst subunits could be used as markers for polarized exocytosis. Furthermore, it could also be hypothesized that, by studying the mechanisms that underlie the association of the exocyst complex with the plasma membrane, it should be possible to identify mechanisms underlying the regulation of polarized exocytosis (Guan et al., 2013). Moreover, since the interaction of exocytotic vesicles with the exocyst is transient and marks the site(s) of active exocytosis in the membrane, fluorescently labeled exocyst subunits could be used as markers for exocytosis while avoiding potential imaging artifacts stemming from pollen tube tips densely populated with vesicles.We have shown previously that the ROP effector ICR1 can interact with SEC3a and that ROPs can recruit SEC3a-ICR1 complexes to the plasma membrane (Lavy et al., 2007). However, ICR1 is not expressed in pollen tubes, suggesting that SEC3a membrane binding in these cells is likely dependent on other factors. In yeast, the interaction of Sec3p and Exo70p subunits with the plasma membrane is critical for exocyst function (He and Guo, 2009). It has been shown that the membrane binding of both Sec3p and Exo70p is facilitated by their interaction with phosphatidylinositol 4,5-bisphosphate (PIP2; He et al., 2007; Zhang et al., 2008). The yeast Exo70p interacts with PIP2 via a number of positively charged residues distributed along the protein, with the highest number located at the C-terminal end (Pleskot et al., 2015). It has been suggested that yeast Sec3p interacts with PIP2 through N-terminal basic residues (Zhang et al., 2008). These data were further corroborated by x-ray crystallography studies, which showed that the yeast Sec3p N-terminal region forms a Pleckstrin homology (PH) domain fold (Baek et al., 2010; Yamashita et al., 2010), a PIP2 interaction motif (Lemmon, 2008).The localization of the exocyst subunits has been addressed in several studies. In Arabidopsis root hairs and root epidermis cells, SEC3a-GFP was observed in puncta distributed throughout the cell (Zhang et al., 2013). Studies on the Arabidopsis EXO70 subunits EXO70E2, EXO70A1, and EXO70B1 revealed them to be localized in distinct compartments that were termed exocyst-positive organelles (Wang et al., 2010). The exocyst-positive organelles, visualized mostly by ectopic expression, were shown to be cytoplasmic double membrane organelles that can fuse with the plasma membrane and secrete their contents to the apoplast in an exosome-like manner. It is not yet known whether other exocyst subunits also are localized to the same organelles and what might be the biological function of this putative compartment (Wang et al., 2010; Lin et al., 2015). In differentiating xylem cells, two coiled-coil proteins termed VESICLE TETHERING1 and VESICLE TETHERING2 recruit EXO70A1-positive puncta to microtubules via the GOLGI COMPLEX2 protein (Oda et al., 2015). Importantly, the functionality of the XFP fusion proteins used for the localization studies described above was not tested, and in most cases, the fusion proteins were overexpressed. Therefore, the functional localization of the exocyst is still unclear.Here, we studied the function and subcellular localization of the Arabidopsis exocyst SEC3a subunit using a combination of genetics, cell biology, biochemistry, and structural modeling approaches. Our results show that SEC3a is essential for the determination of pollen tube tip germination site and growth. Partial complementation of sec3a resulted in the formation of pollen with multiple pollen tube tips. In Arabidopsis growing pollen tubes, SEC3a localization is dynamic, and it accumulates in domains of polarized secretion, at or close to the tip plasma membrane (PM). Labeling of GFP-SEC3-expressing pollen with FM4-64 revealed the spatial correlation between polarized exocytosis and endocytic recycling. Furthermore, the association of SEC3a with PM at the tip marks the direction of tube elongation and positively correlates with the deposition of PI-labeled pectins and specific anti-esterified pectin antibodies in the cell wall. In tobacco (Nicotiana tabacum), the mechanisms underlying SEC3a interaction with the PM and its subcellular distribution depend on pollen tube growth mode and involve the interaction with PIP2 through the N-terminal PH domain. Collectively, our results highlight the function of SEC3a as a polarity determinant that links between polarized exocytosis and cell morphogenesis. The correlation between exocyst function and distribution in pollen tubes provides an explanation for some of the current discrepancies regarding the localization of exocytosis.  相似文献   
2.
A current hypothesis explaining the toxicity of superoxide anion in vivo is that it oxidizes exposed [4Fe-4S] clusters in certain vulnerable enzymes causing release of iron and enzyme inactivation. The resulting increased levels of "free iron" catalyze deleterious oxidative reactions in the cell. In this study, we used low temperature Fe(III) electron paramagnetic resonance (EPR) spectroscopy to monitor iron status in whole cells of the unicellular eukaryote, Saccharomyces cerevisiae. The experimental protocol involved treatment of the cells with desferrioxamine, a cell-permeant, Fe(III)-specific chelator, to promote oxidation of all of the "free iron" to the Fe(III) state wherein it is EPR-detectable. Using this method, a small amount of EPR-detectable iron was detected in the wild-type strain, whereas significantly elevated levels were found in strains lacking CuZn-superoxide dismutase (CuZn-SOD) (sod1 delta), Mn-SOD (sod2 delta), or both SODs, throughout their growth but particularly in stationary phase. The accumulation was suppressed by expression of wild-type human CuZn-SOD (in the sod1 delta mutant), by pmr1, a genetic suppressor of the sod delta mutant phenotype (in the sod1 delta sod2 delta double knockout strain), and by anaerobic growth. In wild-type cells, an increase in the EPR-detectable iron pool could be induced by treatment with paraquat, a redox-cycling drug that generates superoxide. Cells that were not pretreated with desferrioxamine had Fe(III) EPR signals that were equally as strong as those from treated cells, indicating that "free iron" accumulated in the ferric form in our strains in vivo. Our results indicate a relationship between superoxide stress and iron handling and support the above hypothesis for superoxide-related oxidative damage.  相似文献   
3.
Martin  Patrick  Granina  Liba  Martens  Koen  Goddeeris  Boudewijn 《Hydrobiologia》1998,367(1-3):163-174
Oxygen concentration profiles have been measured, by means of with microelectrodes in sediments of Lake Baikal and Lake Malawi, along transects allowing to give a survey of two major ancient Rift lakes: Lake Baikal (Eastern Siberia) and Lake Malawi (East Africa), along depth transects in the constitutive basins of the lakes and/or of relevant depths with regard to oxygen (including including the deepest point, 1680 m, in Lake Baikal). Sediment oxygen penetration depths (SOPs) display very different patterns, depending on the lake in the two lakes. In Lake Baikal, SOPs are variable, show no significant relationship with bathymetric depth and are surprisingly deep on Akademichesky ridge (> 50.0 mm), emphasizing the distinctive feature of this region in the lake. While the Selenga river is an important source of eutrophication, the similarity of SOP-values in the Selenga shallow with those of most other sites suggests either a dilution of organic material by allochthonous matter, or a strong south-to-north transport of particles. In Lake Malawi, available oxygen is restricted to a maximum of three millimetres of the sediment, and there is a negative relationship with bathymetric depth, as a result of a steady decline of oxygen concentration with depth through the water column. Amongst the few parameters known to affect SOPs, the oxygen consumption by the sediment seems the most significant in both lakes. SOP-values furthermore confirm differences in the trophic status of Baikal and Malawi, respectively. The importance of oxygen as a factor likely to create ecological segregation for benthic organisms is discussed. Lake Malawi offers possibilities of bathymetric segregation but no vertical segregation in the sediment. In contrast, no bathymetric segregation related to oxygen is possible in Lake Baikal, but vertical segregation in the sediment is very likely. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
The actin cytoskeleton is a dynamic structure that coordinates numerous fundamental processes in eukaryotic cells. Dozens of actin-binding proteins are known to be involved in the regulation of actin filament organization or turnover and many of these are stimulus-response regulators of phospholipid signaling. One of these proteins is the heterodimeric actin-capping protein (CP) which binds the barbed end of actin filaments with high affinity and inhibits both addition and loss of actin monomers at this end. The ability of CP to bind filaments is regulated by signaling phospholipids, which inhibit the activity of CP; however, the exact mechanism of this regulation and the residues on CP responsible for lipid interactions is not fully resolved. Here, we focus on the interaction of CP with two signaling phospholipids, phosphatidic acid (PA) and phosphatidylinositol (4,5)-bisphosphate (PIP2). Using different methods of computational biology such as homology modeling, molecular docking and coarse-grained molecular dynamics, we uncovered specific modes of high affinity interaction between membranes containing PA/phosphatidylcholine (PC) and plant CP, as well as between PIP2/PC and animal CP. In particular, we identified differences in the binding of membrane lipids by animal and plant CP, explaining previously published experimental results. Furthermore, we pinpoint the critical importance of the C-terminal part of plant CPα subunit for CP–membrane interactions. We prepared a GST-fusion protein for the C-terminal domain of plant α subunit and verified this hypothesis with lipid-binding assays in vitro.  相似文献   
5.
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu2+, even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.The sequence of events by which more than 100 mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1)3 cause familial forms of amyotrophic lateral sclerosis (ALS) is unknown. Studies of purified SOD1 proteins and cellular or rodent models of SOD1-linked ALS suggest that impaired metal ion binding or misfolding of mutant SOD1 proteins in the cellular environment may be related to their toxicity (110). Available evidence suggests that partially unfolded mutant SOD1 species could contribute to motor neuron death by promoting abnormal interactions that produce cellular dysfunction (1116).In previous studies we characterized physicochemical properties of 14 different biologically metallated ALS SOD1 mutants (17) and demonstrated altered thermal stabilities of these mutants compared with wild-type (WT) SOD1 (18). These “as-isolated” SOD1 proteins, which contain variable amounts of copper and zinc, were broadly grouped into two classes based on their ability to incorporate and retain metal ions with high affinity. WT-like SOD1 mutants retain the ability to bind copper and zinc ions and exhibit dismutase activity similar to the normal enzyme, whereas metal binding region (MBR) mutants are significantly deficient in copper and/or zinc (17, 19). We also observed that ALS-associated SOD1 mutants were more susceptible than the WT enzyme to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 (20). The significance of these results is that even WT-like mutants, which exhibit a nearly normal backbone structure (2123), may be vulnerable to destabilizing influences in vivo. Our group and others subsequently showed that the mutant SOD1 proteins share a susceptibility to increased hydrophobicity under conditions that reduce disulfide bonds and/or chelate metal ions (5) and that similar hydrophobic species exist in tissue lysates from mutant SOD1 transgenic mice (46). One consequence of such hydrophobic exposure could be the facilitation of abnormal interactions between the mutant enzymes and other cellular constituents (e.g. chaperones, mitochondrial components, or other targets), which might influence pathways leading to motor neuron death (15, 16, 2427).Accumulating evidence suggests that metal deficiency of SOD1 is an important factor that can influence SOD1 aggregation or neurotoxicity (4, 2833), but the metal-deficient states of SOD1 that are most relevant to ALS remain unclear. Zinc-deficient, copper-replete SOD1 species, which can be produced in vitro by adding copper to SOD1 that has been stripped of its metal ions at acidic pH, were shown to be toxic to motor neurons in culture (28). However, it has not been shown that zinc-deficient, copper-replete SOD1 is produced in vivo as a consequence of ALS mutations, and loading of copper into SOD1 by the copper chaperone for SOD1 (CCS) is not required for toxicity (34, 35). Furthermore, the MBR mutants have a disrupted copper site and have been found to be severely deficient in both zinc and copper (17, 30), yet expression of these SOD1s still produces motor neuron disease (1, 2, 30, 34, 36, 37).When recombinant human SOD1 was overexpressed in insect cells, we instead observed zinc-replete but copper-deficient species for most WT-like mutants, probably because the capacity of the copper-loading mechanism was exceeded (17). These preparations indicate that zinc can be efficiently incorporated into many WT-like mutants in vivo, and much of it is retained after purification. Furthermore, these copper-deficient biologically metallated proteins may be useful reagents to assess the influence of copper binding upon other properties of SOD1 mutants that may be relevant to their neurotoxicity.We previously observed that reduction of the Cys-57—Cys-146 disulfide bond facilitates the ability of metal chelators to alter the electrophoretic mobility and to increase the hydrophobicity of SOD1 mutants (5). This is consistent with the known properties of this linkage to stabilize the dimeric interface, to orient Arg-143 via a hydrogen bond from the carbonyl oxygen of Cys-57 to Arg-143-NH2, and to prevent metal ion loss (3840). However, it remains unclear whether the Cys-57—Cys-146 bond is required to prevent abnormal SOD1 hydrophobic exposure or whether the aberrant conformational change primarily results from metal ion loss. Ablation of the disulfide bond by the experimental (non-ALS) mutants C57S and C146S provides useful reagents to test the relative influence of the disulfide bond and copper binding upon SOD1 properties.In this study we sought to correlate the consequences of copper deficiency, copper and zinc deficiency, and disulfide reduction upon the hydrodynamic behavior and surface hydrophobicity of WT and representative mutant SOD1 enzymes (Fig. 1A). We quantitated the metal contents of as-isolated SOD1 proteins, detected changes in conformation or metal occupancy using native PAGE to assess their electrophoretic mobility, a measure of global conformational change, and correlated these changes to hydrophobic exposure using 1-anilinonaphthalene-8-sulfonic acid (ANS), which is very sensitive to local conformational changes. ANS is a small amphipathic dye (Fig. 1B) that has been used as a sensitive probe to detect hydrophobic pockets on protein surfaces (4144). Free ANS exhibits only weak fluorescence that is maximal near 520 nm, but when ANS binds to a hydrophobic site in a partially or fully folded protein, the fluorescence peak increases in amplitude and shifts to a shorter wavelength (42). ANS also has an anionic sulfonate group that can interact with cationic groups (e.g. Arg or Lys residues) through ion-pair formation which may be further strengthened by hydrophobic interactions (4346).Open in a separate windowFIGURE 1.A, WT SOD1 structure showing the position of the C57-C146 intrasubunit disulfide bond (S–S, yellow), bound copper and zinc ions, and ALS mutant residues. The residues altered in A4V, G85R, G93A, D124V, and S134N SOD1s are indicated as green spheres. The backbone of the β-barrel core and the loops is shown in a rainbow color, from blue at the amino terminus to red at the carboxyl terminus. The figure was generated using PyMOL (84) and PDB entry 1HL5 (22). B, chemical structure of ANS fluorophore.To evaluate further the importance of metal ion binding, we measured spectral changes related to the binding of cobalt and copper to the same SOD1 proteins. We observed that as-isolated WT-like mutants containing zinc could interact with copper ions to produce an electrophoretic mobility and decreased hydrophobicity resembling that of the fully metalated holo-WT SOD1. In contrast, we saw no evidence for copper binding to MBR mutants in a manner that alters their hydrodynamic properties or their hydrophobicity. Our data suggest that binding of both copper and zinc are important determinants of SOD1 conformation and that perturbation of such binding may be relevant to the ALS disease process.  相似文献   
6.
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.  相似文献   
7.
8.
Phosphatidylcholine-hydrolysing phospholipase C, also known as non-specific phospholipase C (NPC), is a new member of the plant phospholipase family that reacts to environmental stresses such as phosphate deficiency and aluminium toxicity, and has a role in root development and brassinolide signalling. Expression of NPC4, one of the six NPC genes in Arabidopsis, was highly induced by NaCl. Maximum expression was observed from 3?h to 6?h after the salt treatment and was dependent on salt concentration. Results of histochemical analysis of P(NPC4):GUS plants showed the localization of salt-induced expression in root tips. On the biochemical level, increased NPC enzyme activity, indicated by accumulation of diacylglycerol, was observed as early as after 30?min of salt treatment of Arabidopsis seedlings. Phenotype analysis of NPC4 knockout plants showed increased sensitivity to salinity as compared with wild-type plants. Under salt stress npc4 plants had shorter roots, lower fresh weight, and reduced seed germination. Expression levels of abscisic acid-related genes ABI1, ABI2, RAB18, PP2CA, and SOT12 were substantially reduced in salt-treated npc4 plants. These observations demonstrate a role for NPC4 in the response of Arabidopsis to salt stress.  相似文献   
9.
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods. Alginate films and their entrapment of live cells will also be addressed. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.  相似文献   
10.
The conversion of native habitats to pasture and other working lands, unbuilt lands modified by humans for production, is one of the greatest threats to biodiversity. While some human-dominated landscapes on continents support relatively high native biodiversity, this capacity is little studied in oceanic island systems characterized by high endemism and vulnerability to invasion. Using Hawaii as a case study, we assessed the conservation value of working landscapes on an oceanic island by surveying native and non-native plant diversity in mature native forest and in the three dominant land covers/uses to which it has been converted: native, Acacia koa timber plantations, wooded pasture, and open pasture. As expected, native plant diversity (richness and abundance) was significantly higher and non-native abundance significantly lower in mature native forests than any other site type. A. koa plantations and wooded pasture supported four and three times greater, respectively, species richness of native understory plants than open pasture. Also, A. koa plantations and wooded pasture supported similar species communities with about 75% species in common. Conservation and restoration of mature native forest in Hawaii is essential for the protection of native, rare species and limiting the spread of non-native species. A. koa plantations and wooded pasture, however, may help harmonize production and conservation by supporting livelihoods, more biodiversity than open pasture, and some connectivity between native forest remnants important for sustaining landscape-level conservation value into the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号